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Abstract

Because classical Maxwellian electromagnetism has been one of the cornerstones of physics
during the past century, experimental tests of its foundations are always of considerable interest.
Within that context, one of the most important efforts of this type has historically been the search
for a rest mass of the photon. The effects of a nonzero photon rest mass can be incorporated
into electromagnetism straightforwardly through the Proca equations, which are the simplest
relativistic generalization of Maxwell’s equations. Using them, it is possible to consider some
far-reaching implications of a massive photon, such as variation of the speed of light, deviations
in the behaviour of static electromagnetic fields, longitudinal electromagnetic radiation and
even questions of gravitational deflection. All of these have been studied carefully using a
number of different approaches over the past several decades. This review attempts to assess
the status of our current knowledge and understanding of the photon rest mass, with particular
emphasis on a discussion of the various experimental methods that have been used to set upper
limits on it. All such tests can be most easily categorized in terms of terrestrial and extra-
terrestrial approaches, and the review classifies them as such. Up to now, there has been no
conclusive evidence of a finite mass for the photon, with the results instead yielding ever more
stringent upper bounds on the size of it, thus confirming the related aspects of Maxwellian
electromagnetism with concomitant precision. Of course, failure to find a finite photon mass
in any one experiment or class of experiments is not proof that it is identically zero and, even as
the experimental limits move more closely towards the fundamental bounds of measurement
uncertainty, new conceptual approaches to the task continue to appear. The intrinsic importance
of the question and the lure of what might be revealed by attaining the next decimal place are as
strong a draw on this question as they are in any other aspect of precise tests of physical laws.
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1. Introduction

One of the major triumphs of nineteenth century physics was the formulation by Maxwell of
a unified mathematical description of the classical electromagnetic field. A basic implication
of Maxwell’s electromagnetism is the constant speed, in vacuum, of all electromagnetic
radiation. Experimental studies have indeed confirmed to a high degree of accuracy that
all electromagnetic radiation travels at the speed of light, c, over a wide range of frequencies.
In turn, this implies that the quantum of light, or photon, appears to be massless. However,
it has energy hν, linear momentum hν/c, and a spin angular momentum with eigenvalues of
±h/2π(≡ ±h̄), where h is the Planck constant and ν the frequency of the electromagnetic
wave. The enormous successes of quantum electrodynamics (QED) have led to an almost
total acceptance of this concept of the massless photon. However, despite this acceptance,
a substantial experimental effort has been made to determine, either directly or indirectly,
whether the photon mass is zero or nonzero. From a theoretical perspective, if the rest mass
of the photon was found to be nonzero, classical electromagnetism and QED would remain
untroubled in spite of the loss of gauge invariance. Moreover, a finite photon mass is perfectly
compatible with the general principles of elementary particle physics, and an answer to the
question of its size can be found only through experiments and/or observations.

It is almost certainly impossible to do any experiment that would firmly establish that the
photon rest mass is exactly zero. The best one can hope to do is to place ever tighter limits on
its size, since it might be so small that none of the present experimental strategies could detect
it. According to the uncertainty principle, the ultimate upper limit on the photon rest mass, mγ ,
can be estimated to be mγ ≈ h̄/(�t)c2, which yields a magnitude of ≈10−66 g, using an age
of the universe of about 1010 years. Although such an infinitesimal mass would be extremely
difficult to detect, there are some far-reaching implications of a nonzero value for it. These
include a wavelength dependence of the speed of light in free space, deviations from exactness
in Coulomb’s law and Ampère’s law, the existence of longitudinal electromagnetic waves and
the addition of a Yukawa component to the potential of magnetic dipole fields, and all of these
have been studied seriously. All these consequences of such an effect open the door to useful
approaches for laboratory experiments or astrophysical/cosmological observations aimed at
determining the photon mass or, more precisely, setting an upper limit on it.

As the fundamental particle that mediates electromagnetic radiation, the photon conveys
energy and momentum through space-time and propagates in vacuum at the constant velocity c,
independent of the frame of reference, as per the second postulate of Einstein’s theory of
special relativity. A corollary of this is that a particle with finite mass can never attain the
speed of light, c, or in other words, such a particle cannot exist in the frame of rest of a
photon. The fact that light could not be brought to a stand-still made this point of view
reasonable and it is theoretically difficult to find any kind of contradictory counter-example.
Even so, experimental efforts to improve the limits on the rest mass of the photon have arisen
to challenge contemporary accepted theories, and this has been happening since the time of
Cavendish, if not earlier, and in any case well before the modern concept of the photon was
introduced.

Questions central to the origin of and basis for the properties of elementary particles, such
as the neutrino, photon, graviton, axion, etc, including their masses, charges, and even their
existence, are some of the most challenging in physics. For the photon, the Particle Data Group
finds the currently accepted upper limit on the rest mass to be mγ � 4×10−49 g ≡ 2×10−16 eV
(Hagiwara et al 2002). The improved value of mγ � 1×10−49 g ≡ 6×10−17 eV was reported
recently by Eidelman et al (2004). These numbers are quite impressively small; almost 22
orders of magnitude less than the mass of the electron. The possibility of a finite photon rest
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mass remains one of the most important issues in physics, as it has a bearing on fundamental
questions such as charge conservation and quantization, the possibility of charged black holes,
the existence of magnetic monopoles and so on. It is our goal in this article to review the
known experiments in this field and evaluate their impact on our state of knowledge regarding
this question. In section 2, we introduce the theoretical foundation for massive photons, via a
discussion of the Proca equations and the consequent distinctness of ‘massive’ electromagnetic
fields compared with their purely Maxwellian equivalents. Using the Proca equations as a
starting point, several possible observable effects associated with a nonzero rest mass of the
photon are developed in section 3. In sections 4 and 5, we then review the known terrestrial
and extra-terrestrial approaches to searching for such effects and assess the results found for
upper limits on the photon rest mass. Section 6 closes the review with a discussion of the
present limitations of and possible improvements to the experimental situation.

2. General theory of massive photon electromagnetism

Electromagnetic phenomena in vacuum are characterized by two three-dimensional vector
fields, the electric and magnetic fields, E(x, t) and B(x, t), which are subject to Maxwell’s
equations and which can also be thought of as the classical limit (limit in large quantum
numbers) of a quantum mechanical description in terms of photons. The photon mass is
ordinarily assumed to be exactly zero in Maxwell’s electromagnetic field theory, which is
based on gauge invariance. If gauge invariance is abandoned, a mass term can be added to
the Lagrangian density for the electromagnetic field in a unique way (Greiner and Reinhardt
1996):

L = − 1

4µ0
FµνF

µν − jµAµ +
µ2

γ

2µ0
AµAµ, (2.1)

where µ−1
γ is a characteristic length associated with the photon rest mass, Aµ and jµ are

the four-dimensional vector potential (A, iφ/c) and four-dimensional vector current density
(J, icρ), with φ and A denoting the scalar and vector potentials, and ρ and J are the charge
and current densities, respectively. µ0 is the permeability constant of free space and Fµν is the
antisymmetric field strength tensor. It is connected to the vector potential through

Fµν = ∂Aν

∂xµ

− ∂Aµ

∂xν

. (2.2)

The variation of Lagrangian density with respect to Aµ yields the Proca equation (Proca
1930a,b,c, 1931, 1936a,b,c,d, 1937, 1938, de Broglie 1940):

∂Fµν

∂xν

+ µ2
γ Aµ = µ0Jµ. (2.3)

Substituting equation (2.2) into (2.3), we obtain the wave equation of the Proca vector field Aµ:

(� − µ2
γ )Aµ = −µ0Jµ, (2.4)

where the d’Alembertian symbol � is shorthand for ∇2 − ∂2/∂(ct)2. In free space,
equation (2.4) reduces to

(� − µ2
γ )Aµ = 0, (2.5)

which is essentially the Klein–Gordon equation for the photon. The parameter µγ could be
interpreted as the photon rest mass mγ , with

mγ = µγ h̄

c
. (2.6)
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With this interpretation, the characteristic scaling length µ−1
γ becomes the reduced Compton

wavelength of the photon, which is the effective range of the electromagnetic interaction. An
additional point is that static electric and magnetic fields would exhibit exponential damping
governed by the term exp(−µ−1

γ r) if the photon is massive instead of massless.
Therefore, a finite photon mass is accommodated in a unique way by changing the

inhomogeneous Maxwell’s equations to the Proca equations. In the presence of sources ρ

and J, the three-dimensional versions of the Proca equations can be written in SI units as

∇ · E = ρ

ε0
− µ2

γ φ, (2.7)

∇ × E = −∂B
∂t

, (2.8)

∇ · B = 0, (2.9)

∇ × B = µ0J + µ0ε0
∂E
∂t

− µ2
γ A, (2.10)

together with

B = ∇ × A, (2.11)

E = −∇φ − ∂A
∂t

(2.12)

and the Lorentz condition

∇ · A +
1

c2

∂φ

∂t
= 0, (2.13)

where ε0 and µ0 are the permittivity and permeability of free space, respectively. The Proca
equations provide a complete and self-consistent description of electromagnetic phenomena.
The equation for conservation of charge is obtained from equations (2.7) and (2.10) and the
Lorentz condition (2.13), so that

∇ · J +
∂ρ

∂t
= 0. (2.14)

Obviously, in massive photon electromagnetism, the Lorentz condition is identical to the law
of charge conservation, or in other words, the Lorentz condition is a necessary result of charge
conversation. Similarly, from equations (2.9), (2.10), (2.12) and (2.13), the equation for
conservation of energy can be written as

∇ · S +
∂w

∂t
= −J · E, (2.15)

where the Poynting vector, S, represents the energy flow density and w is the energy density
of the electromagnetic field (de Broglie 1940, Bass and Schrödinger 1955, Burman 1972a):

S = 1

µ0
(E × B + µ2

γ φA) (2.16)

and

w = 1

2

(
ε0E2 +

1

µ0
B2 + ε0µ

2
γ φ2 +

1

µ0
µ2

γ A2

)
. (2.17)

In a Proca field, obviously, the potentials themselves have physical significance; it does not
arise just through their derivatives. The scalar potential φ and the vector potential A described
by the Proca equations are observable since the potentials acquire energy density ε0µ

2
γ φ2/2

and µ2
γ A2/2µ0, respectively. Phase invariance (U (1) invariance) is lost in Proca theory, but the
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Lorentz gauge is automatically held, and this is indispensable to charge conservation, i.e. the
Lorentz condition becomes a condition of consistency for the Proca field. As a consequence,
the field equation takes the form of equation (2.4). However, if mγ = 0, the Proca equations
would reduce smoothly to Maxwell’s equations.

The theoretical problem of describing the photon is profound and difficult, and the
arguments presented can often be speculative and controversial. There is a huge literature
on this topic and the articles in it vary widely in their scope of investigation. A number
of the more well-known works in this area include (Feynman 1949, Coester 1951, Feldman
and Matthews 1963, Strocchi 1967, Chakravorty 1985, Masood 1991, Mendonça et al 2000).
Although the theoretical problem is an area of great interest, it is not our objective here to
dwell on it, but rather to touch only on those fundamental principles that can help shed light
on the experimental consequences of a nonzero photon rest mass.

3. Implications of a photon mass

3.1. The dispersion of light

The most direct consequence of a finite photon mass is a frequency dependence in the velocity
of electromagnetic waves propagating in free space. From the Proca equations, the electric
and magnetic fields in free space are given by

Aν ∼ exp[i(k · r − ωt)], (3.1)

where the wave vector k, the angular frequency ω and the rest mass µγ (note that here and
in what follows, the rest mass of the photon µγ has units of reciprocal length (wave numbers),
which is related to the mass mγ in grams by equation (2.6), i.e. 1 cm−1 ≡ 3.5 × 10−38 g ≡
2.0 × 10−5 eV) satisfy the Klein–Gordon equation,

k2c2 = ω2 − µ2
γ c2. (3.2)

The phase velocity and the group velocity (the velocity of energy flow) of a free massive wave
would then take the form

u = ω

k
= c

(
1 − µ2

γ c2

ω2

)−1/2

≈ c

(
1 +

µ2
γ c2

2ω2

)
, (3.3)

vg = dω

dk
= c

(
1 − µ2

γ c2

ω2

)1/2

≈ c

(
1 − µ2

γ c2

2ω2

)
, (3.4)

where k = |k| = 2πλ−1 with λ being the wavelength. Because of the nonzero photon mass, the
dispersion produces a frequency dependence, and the group velocity will differ from the phase
velocity. In the Proca equations, c becomes the limiting velocity as the frequency approaches
infinity.

For two wave packets with different propagating frequencies (denoted by ω1 and ω2, and
assuming ω1 > ω2 � µγ c), the velocity differential between them is given by

�v

c
≡ vg1 − vg2

c
= µ2

γ c2

2

(
1

ω2
2

− 1

ω2
1

)
+ O


(

µ2
γ c2

ω2
1

)4

 = µ2

γ

8π2
(λ2

2 − λ2
1) + O

[
(µγ λ1)

4
]
.

(3.5)
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If the two waves move through the same distance L, the time interval between their arrivals is
expressed as

�t ≡ L

vg1
− L

vg2
≈ L

8π2c
(λ2

2 − λ2
1)µ

2
γ , (3.6)

in which the terms of order higher than (µγ λ1)
4 are neglected. Equations (3.4)–(3.6) are the

starting points for detecting a dispersion effect due to the photon rest mass in both the terrestrial
and extra-terrestrial approaches.

3.2. The Yukawa potential in static fields

The next effect we discuss regarding massive photons arises in static fields. For a static electric
field (the case of a static magnetic field will be discussed in section 5), ∂/∂t = 0 and the wave
equation reduces to

(∇2 − µ2
γ )φ = − ρ

ε0
. (3.7)

For a point charge ρ(r) = Qδ(r), and equation (5.25) yields a Yukawa or Debye type of
potential,

φ(r) = 1

4πε0

Q

r
exp(−µγ r) (3.8)

and the electric field becomes

E(r) = Q

4πε0

(
1

r2
+

µγ

r

)
exp(−µγ r). (3.9)

Inspection of equations (3.8) and (3.9) shows that if r � µ−1
γ , the inverse square law is indeed

a good approximation, but if r � µ−1
γ , then the law departs drastically from the predictions of

Maxwell’s equations. (Analogously, in a plasma, the static scalar potential does have a Debye
form,

φ(r) = 1

4πε0

Q

r
exp(−µDr), (3.10)

where µD =
√

n e2/ε0T is the inverse Debye shielding distance, n is the plasma density and
T (in joules) is the plasma temperature. Likewise, in a superconductor, a static magnetic field
obeys

(∇2 − µ2
L)B = 0, (3.11)

where µL = ωp/c is the London skin depth, with ωp =
√

ne2/ε0me denoting the electron
plasma frequency.) So the static fields would be characteristic of exponential decay with
a range µ−1

γ . The exponential deviation from Coulomb’s law and its magnetic analogue in
Ampère’s law provide many sensitive approaches to test for a photon rest mass in laboratory
experiments, and these will be discussed in detail in section 4.

3.3. The longitudinal photon

Maxwell’s equations imply that a photon can be polarized in either of two directions, both
of which are orthogonal to the photon’s direction of motion. A nonzero rest mass of the
photon as described by the Proca equations would result in a third state of polarization, in
which the vector of the electric field points along the line of motion and the particle is called
a ‘longitudinal photon’ (Greiner and Reinhardt 1996). Decomposition of E = ET + EL with
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∇ · ET = 0 and EL = ∇EL, and a similar decomposition of A, shows that the additional mass
term in equation (2.16) describes pure longitudinal radiation while the term (E × B) describes
pure transverse radiation, in which (EL × B) is parallel to the surface of a large sphere around
the source (Nieuwenhuizen 1973). However, if the photon has a mass, it must be exceedingly
small, since the effect of longitudinal photons has been too small to be detected up to the
present (Goldhaber and Nieto 1971b, Burman 1972b,c, 1973).

3.4. Special relativity with nonzero photon mass

It is well-known that the electrodynamic constant c in Maxwell’s electromagnetic field
represents the velocity of electromagnetic waves propagating in vacuum, and special relativity
was developed partly as a consequence of the constancy of the speed of light. However, one of
the predictions of massive photon electromagnetic theory is that there will be dispersion of the
velocity of a massive photon in vacuum. The plane wave solution of the Proca equations without
current is Aν ∼ exp(ikµxµ), where the wave vector kµ = (ω, k) satisfies the relationship in
equation (3.2). It is shown in equation (3.4) that vg = 0 for ω = µγ c, namely the massive
wave does not propagate. When ω < µγ c, k becomes an imaginary quantity and the amplitude
of a free massive wave would, therefore, be attenuated exponentially. Only when ω > µγ c,
can the waves propagate in vacuum unattenuated. In the limit ω → ∞, the group velocity will
approach the constant c, which is consistent with Einstein’s assumption that there is a unique
limiting velocity c for all phenomena. Therefore, a new postulate must be introduced in order
to restore the features of special relativity theory for photons of nonzero mass. The postulate
is as follows (Goldhaber and Nieto 1971b): given any two inertial frames, the first moving at
velocity v with respect to the second, there exists a frequency ω0, depending on |v| and the
desired accuracy ε, such that any light wave of frequency greater than ω0 will have a speed
between c and c − ε in both frames.

A nonzero photon mass implies that the speed of light is not a unique constant but is a
function of frequency. In fact, the assumption of the constancy of the speed of light is not
necessary for the validity of special relativity, i.e. special relativity can instead be based on the
existence of a unique limiting speed c to which speeds of all bodies tend when their energy
becomes much larger than their mass (Kobzarev and Okun 1968, Goldhaber and Nieto 1971b).
Then, the velocity that enters in the Lorentz transformation would simply be this limiting
speed, not the speed of light.

3.5. AB and AC effects with finite photon mass

The well-known topological interference effect of Aharonov and Bohm (AB effect) concerns
a phase shift for electrons diffracting around a tube of magnetic flux (Aharonov and Bohm
1959), and it arises from the presence of a vector potential A in the Lagrangian of a particle
with mass m and velocity v,

L = mv2

2
+ eA · v. (3.12)

When an electron beam is split and then recombined, there will be a phase shift exp(i�AB)

from the interference effect (figure 1). The flux

�AB = e

h̄

∮
A · v dt = e

h̄

∫
B · dS (3.13)

is through any surface bounded by the closed curve defined by the two paths, and it has been
observed and measured in a series of experiments of Tonomura et al (1986).
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Electron 
beam
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Metal
foil

Interference 
region

B

A

Figure 1. Schematic diagram of an experiment to demonstrate electron interference due to the
Aharonov–Bohm effect. The coherent beam of electrons is split into two parts, each passing
through an aperture in the metal foil, and then going on the opposite sides of the solenoid, which
is shielded from the electron beams. The beams are steered by suitable devices A and B and then
brought together in the interference region. The vector potential of the solenoid will produce a
shift in the relative phase of the two electron beams.

For massive photon (finite-range) electrodynamics, the Proca Lagrangian is of particular
interest and the resultant phase shift for an electron beam diffracted around either side of an
infinitely long solenoid was calculated by Boulware and Deser (1989). Although there is an
extremely small magnetic flux leakage outside the solenoid because of the finite length of the
apparatus, it can be adjusted in principle so that only the flux inside the solenoid contributes
to the phase shift. The phase shift for this case is shown to reduce smoothly to that of the
standard AB effect in the limit of vanishing photon mass. An additional observable effect is
predicted from(

µγ R

2

)2

� ��

�AB
· D, (3.14)

where D depends upon the details of the experimental configuration but is of order 1, R is the
distance from the solenoid to the observational location, and �� is the correction due to the
massive photon. The authors used this to find a limit on the photon mass of mγ � 4 × 10−45 g
(corresponding to a reduced photon Compton wavelength of 102 km). To obtain a more
stringent limit on the photon mass, however, the geometry and field strengths that would
be needed do not make this approach competitive with those of other experiments (Tonomura
et al 1986, Boulware and Deser 1989).

An extension of the AB effect was presented by Aharonov and Casher (AC effect) (1984).
They predicted that a neutral particle possessing a magnetic dipole moment should experience
an analogous phase shift when diffracted around a line of electric charge. The AC effect is
an electrodynamic and quantum-mechanical analogue of the AB effect. Consider a magnetic
dipole of mass m and moment µ diffracted around an infinitely long line of charge with density
λ and let v be the dipole’s velocity; the particle’s Lagrangian will be

L = 1
2mv2 − v · (E × µ). (3.15)

The relative phase of the split beam at the recombination point is exp(i�AC) with

�AC = µ

h̄
·
∮

E × v dt = µ

h̄
·
∮

E × dr, (3.16)

as was observed in the neutron interferometry experiment of Cimmino et al (1989).
The AC effect in massive photon electrodynamics was demonstrated by Fuchs (1990).

Consider the case where a magnetic dipole of moment µ is aligned along the line of electric
charge, which means the acceleration of the magnetic dipole vanishes and the AC phase shift
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for the massive photon case then becomes

�AC = µ

h̄

∫
(∇ · E) dS = 4πµλ

h̄
− µ2

γ µ

h̄

∫
φ dS, (3.17)

where the Proca version of Gauss’s law is used and the integral is taken over the area enclosing
the two paths. Noting that the potential for a point particle whose field is governed by the
Proca equations is simply the Yukawa potential, the line charge potential is found to be

φ(r) = 2λK0(µγ r), (3.18)

where K0(x) is a modified Bessel function of the second kind. After integrating, the relative
phase of the split beam at the recombination point R is

�AC(R) = 4πµλ

h̄
µγ RK1(µγ R). (3.19)

Note that since K1(x) approaches x−1 as x vanishes, �AC(R) approaches 4πµλ/h̄ as µγ

vanishes, which means this effect smoothly reduces to the standard effect for zeroµγ (Aharonov
and Casher 1984). In the limit that R approaches infinity, �AC(R) vanishes. This is as expected
since the photon mass causes the electric field to be of finite range. Equation (3.19) can serve as
the basis for a photon mass with a ‘table-top’ apparatus. However, the neutron interferometry
experiment of Cimmino et al (1989) revealed that only photons with a Compton wavelength
of 10 m or less can be detected by these means. So given present-day technology, this is not a
practical approach for bounding the photon mass.

In classical electrodynamics, both the AB and AC effects are nonlocal effects for nongauge
fields, such as for those associated with a finite photon mass. In the AB effect, the flux must
be endless but could be curved arbitrarily, even into a finite toroid, but in the AC effect, the
line charge must be straight and parallel to the magnetic moment (Goldhaber 1989). Given
present-day technologies, neither the AB nor AC effects would provide a practical means for
bounding the mass of the photon more stringently.

3.6. Monopoles and the photon mass

An interesting speculation centres on the combination of a finite photon mass, µγ and the
existence of magnetic monopoles. Gauge invariance is lost in massive photon electrodynamics.
Therefore, one cannot apply it (Dirac 1931, 1948) to derive the well-known Dirac quantization
condition that eg/h̄c is a half-integer with e and g being the elementary electric and magnetic
charges, respectively. In fact, Dirac’s approach would not allow any gauge invariant theory
to include a particle that is the source of a r−2 magnetic field with additional ‘Yukawa’
falloff (Goldhaber and Nieto 1971b). Ignatiev and Joshi (1996) further proved that the Dirac
quantization condition cannot be derived in massive photon electrodynamics because gauge
invariance disappears, thus pointing to the conclusion that the Dirac monopole and the finite
mass photon cannot coexist within the same theory (Ignatiev and Joshi 1996, Singleton 1996).

In classical theory, Maxwell’s equations can be generalized to include magnetic charge
and a finite photon mass. They, then, become

∇ · E = ρ

ε0
− µ2

γ φ, (3.20)

∇ × E = −∂B
∂t

− ε0Jg, (3.21)

∇ · B = µ0ρg, (3.22)

∇ × B = µ0J + µ0ε0
∂E
∂t

− µ2
γ A (3.23)

together with the relations in equations (2.11)–(2.13).
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It is clear from these equations that the photon mass terms µ2
γ φ and µ2

γ A on the right-
hand side violate the symmetry between the electric and magnetic charges. The electric
equation (3.20) has a solution of the familiar Yukawa-potential form, while the magnetic
equation (3.22) does not cover the photon mass at all. Therefore, the system of ‘Maxwell +
photon mass + magnetic charge’ equations is not consistent, as can be verified by investigating
a static monopole-like solution of that system (Ignatiev and Joshi 1996).

3.7. The Casimir effect for massive photons

It is well-known that the Casimir force is an attractive force between two neutral conducting
plates (Casimir 1948, Casimir and Polder 1948). This interaction arises from zero-point
fluctuations, which are a rare macroscopic manifestation of the boundary dependence of the
quantum vacuum. The attractive force F (per unit area) between two perfectly conducting
slabs separated by a distance 2L is (see the monographs of Mostepanenko and Trunov (1997)
and Milton (2001) and the reviews by Kardar and Golestanian (1999) and Bordag et al (2001))

F = − π2

240

h̄c

(2L)4
= − ∂U

∂(2L)
, (3.24)

U = − π2

720

h̄c

(2L)3
. (3.25)

Massive photon electrodynamics contains a new characteristic length scale, the Compton wave
length, which will lead to new physical effects over the length scale, including the Casimir
effect. To calculate the Casimir force with finite photon mass, one must obtain the dependence
of the total zero point energy of the system on the plate separation 2L, and then sum over all
the frequencies of the Proca solutions. A complete analysis of the Proca normal-mode structure
for parallel-plane geometry shows that the Casimir force comes from two contributions: one
is the Maxwellian modes and the other is the continuum modes (Barton and Dombey 1984,
1985, Davies and Toms 1985).

The Maxwellian modes represent two independent solutions of the Proca equations,
which correspond to the two independent and transverse solutions of Maxwell’s theory.
The calculation of the zero point energy from the Maxwellian modes is straightforward and
can be performed on the basis of dimensional regularization (Ambjorn and Wolfram 1983)
and the appropriate dispersion relation including the photon mass (Barton and Dombey 1984,
1985), which is

U1(L) = − π2

3(2L)3

∫ ∞

µ

dρ(ρ2 − µ2)3/2

e2πρ − 1
, (3.26)

where µ = 2Lµγ /π . Approximating this expression for the case of small µ yields

U1(L) = π2

(2L)3

[
− 1

720
+

1

48
µ2 − 1

12
µ3 − 1

16
µ4 ln µ + · · ·

]
. (3.27)

The first term gives the normal Casimir attractive force, and the lowest finite-mass correction
tends to reduce the effect.

The continuum modes represent a new class of solution with a continuous spectrum for
the Proca equations, which does not exist for Maxwell’s equations. Since the continuum
(longitudinal) modes can penetrate the conductors, one should consider the two conducting
plates to be of finite thickness N . The general expression for zero point energy from the
continuum modes is (Barton and Dombey 1984)

U2(L) = π2

(2L)3
f (µγ L, µγ N), (3.28)
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where in the most favourable configuration, L � N , one finds (for the realistic case
µγ L, µγ N � 1)

f ∼ 1

2π2
(µγ L)4 ln

N

4L
. (3.29)

This contribution to the Casimir force can be negligible, compared with the leading finite-mass
correction to the contribution from the transverse modes. Based on the present experimental
precision (the recent experimental work is discussed in Chen et al (2004)), no prominent
reduction in the bounds on the photon mass is achieved.

3.8. Photon mass and blackbody radiation

If the photon had a nonzero rest mass, one might initially expect a photon gas to have
two transverse degrees and one longitudinal degree of freedom. This would alter Planck’s
radiation law by a factor of 3/2, in contradiction with experience. Although dynamical
symmetry breaking of the standard model is ruled out, much interest has been shown in
possible spontaneous symmetry breaking (Dombey 1980, Primack and Sher 1980, Abbott and
Gavela 1982, Georgi et al 1983, Nussinov 1987, Mohapatra 1987, Suzuki 1988).

Dombey (1980) argued that spontaneous U(1) symmetry breaking would imply that a
gauge particle, the photon, would become massive at a low enough temperature, or more
exactly, a photon gas in equilibrium with a heat bath would undergo a phase transition at
T = Tc so that at temperatures below Tc, each photon in the gas would have a nonzero mass
µγ (T ). Above this phase-transition temperature, the photon is strictly massless. Primack and
Sher (1980) claimed that present limits on the photon mass show only that mγ is negligible for
T > 2.7 K ∼10−4 eV. Meanwhile, they argued that they have not found a proper explanation
for this electromagnetic gauge-symmetry breaking and, therefore, cannot estimate Tc or mγ .
However, Abbott and Gavela (1982) pointed out that the scenario proposed by Primack and
Sher is impossible. Their thought was that a virtual photon propagating through thermal
radiation at normal laboratory temperatures is completely unaffected simply because there is
no existing mechanism to interact with the thermal photons in any appreciable way. Therefore,
it is completely valid and applies to experiments regardless of whether they are carried out at
room temperature or at absolute zero.

Nevertheless, according to an argument by Bass and Schrödinger (1955), the interaction
of longitudinal photons with matter would be so feeble as to make them irrelevant for the
equilibration of thermal radiation in a perfectly reflecting cavity: its walls would be essentially
transparent to them. Stueckelberg (1941, 1957) first investigated QED with a massive photon
and concluded that amplitudes describing longitudinal modes tended continuously to zero as
µγ → 0, provided that electromagnetic current is conserved.

In a cavity with volume V , the partition function Z is given by ln Z = λ ln
∑

n exp(−βεn)

(Hernandez 1985), where λ is the number of photon polarizations and εn = hv =
(((h2c2)/(4V 2/3))n2 + m2

γ c4)1/2, which leads to the spectral distribution

ρ(v, mγ , T ) = ρP(v, T )

√
1 −

(
mγ c2

hv

)2

, (3.30)

where ρP(v, T ) = ((2π)/(c2)((hv3)/(ehv/kT − 1)) is the Planck spectrum. At very low
temperatures kT � mγ c2, the radiance R = ∫

ρ dv will approach zero exponentially, and at
high temperatures kT � mγ c2 (Hernandez 1985),

R = σSBT 4

(
1 − 5

4π2

(
mγ c2

kT

)2
)

, (3.31)
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where σSB = 2π5k4/(15h3c2) is the theoretical value of the Stefan–Boltzmann constant.
Unfortunately, the relatively large uncertainties in knowledge of σSB makes this an unpractical
means for bounding the photon mass. (The fractional error of �σ/σ ∼ 10−3 at T = 103 K
implies mγ < 10−35 g.) For the case of the cosmic blackbody radiation (CBR), assuming
that the CBR flux corresponds to a slight distortion of a T = 3 K Planck distribution, an
approximate error of 10% produced a bound of order 10−37 g for the photon rest mass.

Following the hypothesis of Georgi et al (1983), de Bernardis et al (1984) have investigated
the effects of photon mass on the spectral behaviour of the cosmic background dipole
anisotropy, and found a distortion increasing with wavelength to such an extent that the direction
of the dipole anisotropy can be reversed. The best fit of the available but not totally reliable
experimental data gave a value for the photon mass of (2.9 ± 0.1)× 10−51 g with a confidence
level of 68%. However, as they claimed, the evidence for nonzero photon mass is based
essentially on the long wavelength dipole anisotropy data. Thus, a larger collection of high
spectral resolution data would be important in order to claim the existence of photon mass, as
this quantity is extremely sensitive to photon oscillation in the dipole anisotropy.

3.9. Other implications

Besides those special cases discussed above, the massive photon effect should manifest itself,
in principle, in almost all electromagnetic phenomena that obey Maxwell’s equations. But
not all such phenomena are either observable or would be practical to implement. So the
experimental efforts to tighten the limits on the photon rest mass are greatly restrained. In
some new theories, useful approaches may be found in the near future to set more stringent
bounds on the photon rest mass. These might include, for instance, string theory or M-theory
(Kostelecký and Samuel 1991, Arkani-Hamed et al 1998), extended electromagnetic theory
(Davies and Toms 1985, Lehnert and Roy 1998, Lehnert 2000), B(3) field theory (Evans and
Vigier 1994, Evans and Crowell 2001), new weak force predictions, and others (Bartlett and
Lögl 1988, Cameron et al 1993, Krause et al 1994, Kloor et al 1994, Jackson and Okun 2001,
Prokopec et al 2002, Kohler 2002). Although many of these authors discuss very interesting
possibilities, further discussion of them is beyond the scope of this review, which will focus
in what follows on the experimental and observational findings.

4. Laboratory limits on the photon mass

4.1. General introduction

Photons, just like any other observed particle, possess a real physical identity and are not just
a conceptualization of the physicist’s mind. Once the photon is provided with a finite mass,
three immediate consequences may be deduced from the Proca equations: (1) there will be a
frequency dependence in the velocity of light propagating in free space, (2) a third state of
polarization, viz, the ‘longitudinal photon’ will exist and (3) there will be some modifications
in the characteristics of the classical static fields. Critical scientific minds since the time of
Cavendish and before have repeatedly come to the conclusion that the photon may have mass.
The question is a persistent one and has spurred several reviews of the topic over the past
30 years (Goldhaber and Nieto 1971b, Chibisov 1976, Byrne 1977, Dolgov and Zeldovich
1981, Vigier 1990, 1992, 1997, Gray 1997, Zhang 1998). In this section, we will discuss the
history of the various experimental searches for the photon mass that have been carried out in
the terrestrial laboratory or on the surface of the earth.
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4.2. Measurement of the wavelength independence of the velocity of light

Over the past 300 years, and especially during the last century, the speed of light was measured
frequently and repeatedly using several different laboratory approaches and astronomical
methods. The continual advancement of measurement technology led to considerable
improvements in the precision and accuracy of those measurements. There is an extensive
literature on the subject and it has been covered in a long series of reviews which, in temporal
order, are by Birge (1941a,b), Dorsey (1944), Mulligan (1952), Mulligan and McDonald
(1957), Taylor et al (1969), Froome and Essen (1969), Mulligan (1976), Wilkie (1983) and
more recently by Norman and Setterfield (1987), and partly by Flowers and Petley (2001).
Current scientific opinion is that the speed of light is a fixed and immutable constant of nature,
and represents the fastest possible speed in the physical universe. In October 1983 the speed
of light, c, was declared to be a universal constant of nature whose value was known exactly
and defined as 299 792 458 m s−1 and was then subsequently incorporated into the definition
of the metre by the General Conference on Weights and Measures, in Paris (Wilkie 1983). To
be precise, what is routinely referred to as the ‘speed of light’ is really the speed of light in
vacuum (the absence of matter). However, the speed of light of course depends on the material
or medium through which it is propagating. Thus, for example, light moves slower in glass
than in air and in both cases the speed is less than in vacuum. However, the density of matter
between the stars is sufficiently low that the actual speed of light through most of interstellar
space is essentially the speed that it would have through the vacuum.

The second postulate of special relativity is that the speed of light has the same value in all
inertial frames, although this had not yet been tested when it was proposed by Einstein. From
this and the postulate that the form of physical laws remains the same in all inertial systems,
Einstein then derived the Lorentz transformations, which Lorentz himself had already used to
demonstrate form invariance of Maxwell’s equations. The investigations of the invariance of the
speed of light are usually grouped into three different categories (Robertson 1949, Mansouri
and Sexl 1977): measurements of the isotropy of space (Michelson–Morley experiments),
independence of the speed of light from the velocity of the source (Kennedy–Thorndike
experiments), and time dilation experiments (typically based on Doppler spectroscopy). Some
high precision recent examples of all three types of experiments show how the various
techniques have been improved over the years (Young 1999, Braxmaier et al 2002, Lipa et al
2003, Wolf et al 2003, Müller et al 2003a,b, Saathoff et al 2003 and the references therein).
The role of special relativity as one of the fundamental tenets of physics is established ever
more firmly by careful experimental studies such as these.

From the standpoint of testing for a photon mass, the central issue is one of searching for
a frequency (or wavelength) dependence in the speed of light. As discussed above, frequency
dispersion of the velocity of light is the most direct consequence of a nonzero photon mass.
The investigations of invariance of c over the electromagnetic spectrum thus provide the most
immediate approaches to search for some trace of the massive photon. Prior to the 1970s,
c had already been measured to an accuracy of one to ten parts in 106 over much of the
electromagnetic spectrum. However, there was no evidence in favour of a dispersion effect up
to that point.

Such measurements have been made by several different approaches, and an excellent
review of them was written by Froome and Essen (1969). The general conclusion was that the
speed of light had been shown to remain constant over the range of frequencies from 108 to
1015 Hz within an accuracy of about one to ten parts in 105–106. According to equation (3.5),
since the dispersion effect depends quadratically on wavelength (frequency), considerable
overall improvement in the situation could thus be achieved by searching for dispersion at much
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lower frequencies (or longer wavelengths), even if it must be done with less accuracy. In 1937,
Ross and Slow made a determination of the phase velocity of radio waves transmitted along the
surface of the ground. The average result obtained for this velocity over the wavelength range
20–120 m was 2.95×108 m s−1, with the overall experimental uncertainty of the measurement
found to be about 5%. If this deviation is ascribed to a nonzero photon mass effect on
the fixed propagation path, it corresponds to mγ � 5.9 × 10−42 g. A very comprehensive
investigation of the speed of medium-band radio waves (wavelength of 230–345 m) was
carried out during 1934–1935 by Mandelstam and Papalexi (1944) and their collaborators.
The method comprised a determination of the time of transit of waves between sending and
reflecting stations, by measuring the phase difference between two sets of waves which had
frequency ratios that were rational. The phase delay of the two waves was calculable. Except
for overland transmission, where the measured dispersion was quite large (∼2%) due to various
intervening obstacles, the mean results for the speed of the radio waves was between the limits
of 2.990 and 2.995 × 108 m s−1 for transmission through clear air, or over sea or fresh water.
When analysed in terms of a wavelength-dependence of the speed of light, their findings would
place an upper limit on the photon rest mass of mγ � 5.0 × 10−43 g. This result was improved
by Al’pert et al (1941) who used the same technique and found mγ � 2.5 × 10−43 g from a
velocity shift of <7 × 10−4 for radio waves of 300 � λ � 450 m for transmission over sea
water.

Using a radio-wave interferometer operating over a frequency span from 172.8 MHz to
≈1015 Hz, Florman (1955) measured the velocity of propagation of electromagnetic waves
at the surface of the earth. Converted to the value in vacuum, the measured phase velocity
was found to be 299 795.1 ± 3.1 km s−1 with a 95% confidence interval, the uncertainty of
which would reduce to ±1.4 km s−1 including an estimated limit to the systematic error of
±0.7 km s−1 when based on a 50% confidence interval. The measurement accuracy was limited
primarily by the uncertainty within which the refractive index of air could be obtained from
measured values of pressure, temperature and relative humidity. If this result is interpreted
in terms of dispersion of light, the relative difference of the velocity would be �c/c � 10−5.
Substituting those parameters into equation (3.5) and neglecting the higher order term, this
then corresponds to an upper limit on the photon mass of mγ � 5.6 × 10−42 g.

When the terrestrial (laboratory) conditions eventually became an obstacle to obtaining
higher precision measurements on the frequency-dependence of light, astronomical
observations of the dispersion of electromagnetic waves from distant sources then began
to provide more promising approaches to extend the accuracy of the determinations of the
relative velocities at different wavelengths. These types of measurements could well be placed
in the category of extra-terrestrial observations, but we discuss them here because the same
principle used in the laboratory measurements is employed. In a letter to Nature, Lovell et al
(1964) analysed optical and radio events that occurred in four flare stars (UV Ceti, V371
Orionis, YCZ Mi and EV Lac.) and concluded that the velocity of light and radio waves was
the same to within four parts in 107 over a wavelength range from 0.54 µm to 1.2 m, which led
to an upper limit of mγ � 1.6 × 10−42 g on the photon mass. The authors also introduced a
parameter p to help interpret their results in terms of a linear dependence of c on wavelength λ

p = c

�c

λ2

λ1
. (4.1)

This made it possible to relate measurements from different regions of the spectrum that had
different limits on the dispersion in velocity �c. Their resulting value for p was 5 × 1012,
which was indeed superior to the values obtained from terrestrial measurements. For example,
the corresponding value for the work of Froome (1958) was p = 1 × 1010 at 72 GHz, and for
Florman (1955) it was p = 3 × 1011 at 173 MHz. However, as pointed out by Brown (1969),
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this parametrization is not a good way to characterize the variation of speed with energy,
because �c did not approach zero as λ1 approaches λ2. This difficulty could be avoided by
the introduction of (λ2 − λ1)/λ1 in place of λ2/λ1 in the definition of p, as was suggested by
Bay and White (1972). However, as far as the photon mass is concerned, a larger p does not
mean a lower limit on the photon mass, because p is only sensitive to the ratio of different
wavelengths while the photon mass is characterized not only by the wavelength ratio but more
directly by the absolute magnitude. Hence, the longer wavelengths would result in a lower
limit on the photon mass even if the measurement of the relative velocities is less accurate due
to the quadratic dependence on wavelength, as per equation (3.5). In a succinct review, Brown
(1969) clarified the statements concerning the energy-independence of the velocity of light
contained in several articles (see the references therein). Brown used the parameter p to weight
the experimental results from different frequency ranges. Because the range of wavelengths
examined was crucial, the author argued that the wider range of energies measured in the
laboratory made it possible to obtain better limits on p from those measurements than from
the astronomical ones, which was in opposition to the views of Lovell et al (1964) and Warner
and Nather (1969). Using data for waves with energies of E = 4 × 10−9 eV (λ = 300 m) and
E = 6 GeV, the result was �c/c � 5×10−4, implying p > 3×1021 and mγ � 2.3×10−43 g.
This value of p was an improvement of almost five orders of magnitude compared with the
value from the observations of the Crab Nebula pulsar by Warner and Nather (1969), who
found p > 3 × 1016 over a wavelength range of 0.35–0.55 µm, with �c/c � 5.0 × 10−17,
which set the most stringent limit on the possible speed dependence on frequency up to then,
but which implied a limit on the photon mass of only mγ � 5.2 × 10−41 g. Similarly, the
data of Mandelstam and Papalexi (1944) and Luckey (1952), who measured the velocity of
170 MeV gamma rays, yields p > 1018, implying mγ � 2.0 × 10−42 g, as contrasted with
p > 5 × 1012 reported by Lovell et al (1964). In 1973, Brown et al reported an experiment
which directly compared the velocities of propagation of short pulses of eV (visible) and
GeV electromagnetic radiation. Employing time-of-flight techniques over a flight path of
1310 m (4300 ft) and a flight time of 4.3 µs, the results gave a relative velocity difference
(c (GeV) − c (eV))/c (eV) ≡ �c/c = �t/t = (1.8 ± 6) × 10−6, corresponding to p < 1015

but a worse limit on the photon mass.
In a brief review of possible dispersion of the velocity of light in vacuum by Bay and White

(1972), the authors invoked a modified Cauchy-type formula to represent the dispersion,

n2 = 1 +
A

ν2
+ Bν2, (4.2)

in which n is defined by cphase = c0/n and c0 is the velocity of light with frequency ν in the
absence of dispersion, and the parameters A and B characterize the dispersive effect of the
frequency-dependent speed of light. For compatibity with special relativity, the only possible
version of this dispersion formula that could hold for vacuum required A < 0 and B = 0,
in particular, A = −(mc2/h)2 with m denoting the mass of the particles. The results of
several pulsar measurements interpreted according to equation (4.1) by Bay and White (1972)
indicated that the speed of light was constant to within 10−20 throughout the visible, near
infrared and ultraviolet regions of the spectrum, corresponding to a rough upper limit on the
photon mass of mγ < 3 × 10−46 g. This limit due to dispersion of the speed of light well
exceeds that of any of the metrological experiments.

In 1999, Schaefer made use of explosive astrophysical events at high redshift to place
strict constraints on the limits of the fractional variation in the speed of light with frequency,
the photon mass and the energy scale of quantum gravity. By analysing the constraints for
bursts with measured redshift from observations over the range of radio to gamma rays, two
low limits on photon mass were obtained from gamma ray bursts GRB 980703 (4.2×10−44 g)



94 L-C Tu et al

Table 1. Upper bounds on the dispersion of the speed of light in different ranges of the
electromagnetic spectrum, and the corresponding limits on the photon mass.

Wavelength (energy or
Author (year) Type of measurement frequency) range

�c

c
Limits on mγ g

Ross et al (1937) Radio waves transmission 20–120 m 0.05 5.9 × 10−42

overland
Mandelstam and Papalexi Radio waves transmission 230–345 m 7 × 10−4 5.0 × 10−43

(1944) over sea
Al’pert et al (1941) Radio waves transmission 300–450 m 7 × 10−4 2.5 × 10−43

over sea
Florman (1955) Radio-wave interferometer 172.8 MHz−1015 Hz 10−5 5.7 × 10−42

Lovell et al (1964) Pulsar observations on 0.54 µm−1.2 m 4 × 10−7 1.6 × 10−42

four flare stars
Froome (1958) Radio-wave interferometer 72 GHz 3.3 × 10−7 4.3 × 10−40

Warner et al (1969) Observations on Crab 0.35–0.55 µm 5.0 × 10−17 5.2 × 10−41

Nebula pulsar
Brown et al (1973) Short pulses radiation eV–GeV 1.8 × 10−6 1.4 × 10−33

Bay et al (1972) Pulsar emission Microwave to ultraviolet 1 × 10−20 3 × 10−46

Schaefer (1999) Gamma ray bursts 5.0 × 109–1.2 × 1020 Hz 6.6 × 10−13 4.2 × 10−44

(GRB980703)
Gamma ray bursts 7.2 × 1018–4.8 × 1019 Hz 6.3 × 10−21 6.1 × 10−39

(GRB930229)

and GRB 970508 (1.5 × 10−43 g). The limits on the fractional variation in the speed of light
with frequency �c/c were 6.6 × 10−13 and 2.9 × 10−12, respectively. The most stringent
bound on �c/c was 6.3×10−21 (corresponding p = 1.1×1021) for GRB 930229, which was
almost 104 times better than the Crab pulsar limit (Warner and Nather 1969), but only yielded
an upper limit of 6.1 × 10−39 g on the photon mass due to the extra-high frequency involved.

Table 1 presents a summary of all these results for a simple comparison of the fractional
variations, �c/c, with frequency and the corresponding upper limits on the photon mass.
Theoretically speaking, to obtain tighter constraints on the photon mass, one should choose
waves of lower frequency that propagate over longer distances. On the other hand, very low
energy waves are difficult to transmit over longer pathways because of the dissipation involved.
However, for testing the energy-independence of propagating waves over a large spectral band,
there is no need to use only low energies. Using the astrophysical data from high energy pulsars
it is possible to search for an energy-dependence of massless particles. Hirata et al (1987)
and Bionta et al (1987) detected the neutrinos from SN 1987A over the energies 10–30 MeV,
yielding a limit of about �c/c � 2×10−12. Through observation of the narrow phase structure
of emissions from the 33 ms Crab pulsar at a range of 50–500 MeV, Thompson et al (1975)
and Clear et al (1987) found a limit of �c/c � 2.5 × 10−14. Haines et al (1990) analysed
the observations of Hercules X-1 (Dingus et al 1988), the data of which spanned an energy
range of 100–2000 TeV, yielding a bound on the dispersion by �c/c � 2 × 10−13, but none
of these led to improvements on the limit of the photon mass.

4.3. Null tests of Coulomb’s inverse square law

4.3.1. Historical review of Coulomb’s law. The famous inverse square law of electrostatics,
first published in 1785 by Charles Augustin de Coulomb, carries his name and is the
fundamental law governing electrostatic interactions. As the first quantitative physical
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principle developed within electrical science, Coulomb’s inverse square law has been the basis
for many significant contributions to the development of electricity, magnetism and related
fields. From Coulomb’s law and the principle of superposition, one arrives at Gauss’s law
and the conservative nature of the electric field. The laws of electrostatics may be generalized
using special relativity to obtain Maxwell’s equations. The validity of Coulomb’s law has been
tested continuously over the past two centuries, particularly in its inverse square nature. Based
on the classical ingenious scheme devised by Henry Cavendish (1773), modern experiments
usually yield not only the result of possible deviations from true inverse square behaviour, but
also upper limits on the photon rest mass, as we shall see below.

Perhaps the first investigator to explore the interaction between charges was Benjamin
Franklin in 1755. In his empirical studies, he observed that when a cork ball suspended by a
silk thread was placed near a charged metal cup, the cork was strongly attracted to the surface of
the cup. However, when the cork was placed anywhere inside the metal cup, it was not attracted
to the inside surface of the cup at all. He thought this phenomenon was inconceivable and he
could not explain it. So Franklin communicated his discovery to his friend, Joseph Priestley,
and expected him to perform this experiment to confirm the result. In 1766, Priestley repeated
this experiment and concluded that an electrically charged cavity conductor did not produce
electric force on the charges inside it. Besides this, he found another phenomenon: there
was no charge on the inside surface of the cavity when the cavity was electrically charged.
Priestley reported his results in 1767 in his classic treatise ‘The history and present state
of electricity, with original experiments’. To suggest an explanation for this phenomenon,
Priestley associated it with the contemporary findings of Newton’s gravitation and made the
bold deduction that the law of electric force between charges was the same as the law of
gravitational attraction, i.e. it was also an inverse square law. Unfortunately, Priestley did no
further research in this area.

The first experimental investigation of what was to become Coulomb’s inverse square
law was made in 1769 by John Robison (Elliott 1966). The experiment was very simple.
The repulsive force between two charged spheres was balanced by the force of gravity acting
on a pivoted arm. By adjusting the supporting beam of the pivoted arm to different angles,
the repulsive force could be measured at several distances from the known weight of the balance
sphere. Robison expressed his results in terms of a possible deviation from an inverse square
law, postulating that the exponent applied to the charge separation distance was not exactly 2
but 2+q. He found that the repulsive forces between two charges were inversely proportional
to the distance squared between them, and that the value of q was 0.06. Robison ascribed the
result to experimental error and concluded that the magnitude of the electric force between two
charges was inversely proportional to the square of the distance between them. Unfortunately
again, Robison did not report his experimental results until 1801. By then Coulomb had already
published his own work and this inverse square law would become known as Coulomb’s law.
Even so, Robison’s work was essential to the early theories of electromagnetism, which reached
their apex in the work of Robison’s fellow, James Clerk Maxwell. It was not understood that
there could be other interpretations of Robison’s experiment, until in the 20th century it became
clear that an implied limit on the photon mass of 4 × 10−40 g could be derived from it.

In 1773, another predecessor of Coulomb in this area was Henry Cavendish, who employed
concentric spheres to study the interaction between charges indirectly. The experimental
apparatus is shown in figure 2, and it operated as follows. First, the globe was connected to
one of the closed hemispheres by a conducting wire. Then, the outer sphere was electrically
charged until the connecting wire was broken by a withdrawable silk thread. Finally, the outer
sphere was opened and removed, and discharged completely. A pith-ball electrometer was
then used to detect the electric charge on the inner globe. The experimental result was that the
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Figure 2. The Cavendish apparatus for testing the inverse square law of electrostatics. The inner
globe was fixed on an insulated supporting post. The hollow pasteboard hemispheres, slightly larger
than the globe, were mounted in wooden frames via two glass bars. The frames were coupled with
hinges so as to close the hemispheres easily. When the frames were closed, the globe and the
hemispheres formed a set of insulated concentric spheres. Both the globe and hemispheres were
covered with tinfoil to make them essentially perfect conductors of electricity.

pith balls of the electrometer did not separate, and this indicated the absence of charge on the
inner globe.

In explaining his result, Cavendish suggested that, as with the gravitational force between
bodies, the electrical force between charges obeyed an inverse square law as well, but with
the unique difference that the electric force between like charges was repulsive while that
between opposite charges was attractive. The following model illuminates his reasoning. Let
the electric force between charges takes the form of F ∼ r−n; then, suppose that there was
an electrically charged spherical shell with a uniform surface charge density σ , and consider
a unit point charge P placed inside the shell. The force acting on the point charge P would
then consist of two parts: one was from the charges in the area dS1, which has a solid angle
d�1 towards the point charge P , while the other was from dS2 with solid angle d�2 as shown
in figure 3. The force acting on P from dS2 would be σdS2/r

n
2 r0, while the force from dS1

would be −σdS1/r
n
1 r0 where r0 denotes the unit vector pointing along the line of action of the

force. So, the net force on the unit point charge P would be

dF ∝ σ dS2

rn
2

r0 − σ dS1

rn
1

r0. (4.3)

Considering the relationship between an area and corresponding solid angle, namely d�1 =
dS1 cos θ/r2

1 , d�2 = dS2 cos θ/r2
2 and d�1 = d�2 = d�, it would then be easy to get the net

force on the unit charge P due to the surface charge densities in the areas dS1 and dS2, namely

dF ∝ σ dS2

rn
2

r0 − σ dS1

rn
1

r0 = σ d�

cos θ

(
1

rn−2
2

− 1

rn−2
1

)
r0. (4.4)

Obviously, if n = 2, the charges on dS1 and dS2 had a null net force on the charge P , which
indicated that the force acting on the charge inside the electrically charged spherical shell was
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Figure 3. The electrical force was inversely proportional to the square of the distance. The
electrically charged metal spherical shell was divided into two parts by the plane AB. A point
charge P was placed inside the shell, which experienced a force from the charge on the surface
of the shell. Although the upper part, ACB, was smaller than the bottom part, ADB, the net force
acting on the charge P will be exactly zero if the electric force obeys the inverse square law.

exactly zero if the electric force obeyed the inverse square law. In other words, the uniformly
distributed charge on the outer surface of the metal sphere was the necessary consequence of
an inverse square law of electric charges. So, if there was any deviation from the inverse square
law, charges would migrate through the wire to the inner globe in Cavendish’s experiment. If
n > 2, the action from the lower hemisphere would exceed that from the upper one, which
would result in the point charge P moving upwards. Whereas, if n < 2, then, the point charge
P would move downwards. Cavendish likewise interpreted his findings in terms of a possible
breakdown of the inverse square law, and concluded that the deviation q in the exponent of r

cannot be greater than 0.02. Modern interpretations of Cavendish’s result now give an upper
limit on the photon rest mass that was a little greater than 1 × 10−40 g. Obviously, the large
background electric fields that arose when the two outer hemispheres were removed would
produce the major limitation to the accuracy of this experiment, and an unavoidable result of
this design was that stray charges could leak to the inner sphere along the insulators supporting
it. Like Robison, Cavendish did not publish his discovery but instead, about 100 years later,
Maxwell mentioned the experiment in his book ‘The Electrical Researches of the Honourable
Henry Cavendish’.

In 1873, a revised version of Cavendish’s experiment was performed by Maxwell at
the Cavendish Laboratory in Cambridge University. The main measure used to improve the
experimental embodiment was that the outer sphere was earthed during the second part of the
experiment instead of being removed, thus providing a perfect shield for disturbances, but at
the expense of determining the potential of the inner shell with greater difficulty. Maxwell
employed a spherical air condenser consisting of two insulated spherical shells, the outer
one having a small hole in it so that the inner one could be tested for charge by inserting
an electrode from a Thomson electrometer. The hole was closed by a small lid carrying an
inward probe which simultaneously connected the two shells together. It was imperative that
the surface of the outer conductor be a closed one during the first part of the experiment. Then,
the outer shell was charged to a high potential, and the lid and the connector were removed
by a silk thread. Finally, Maxwell observed the same experimental phenomenon as Cavendish
and concluded that the deviation q was less than 5 × 10−5, now interpreted as corresponding
to an upper limit on the photon mass of 5 × 10−42 g.
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Although numerous workers had investigated the force law between charges before
Coulomb, and some had even attained higher precision, it was Coulomb who first proclaimed
the inverse square law, in 1785. A noteworthy point that should be emphasized was that
the experiments performed by Coulomb were done independent of those of all others. The
experiments were divided into two steps (Elliott 1966). Using a torsion balance Coulomb
demonstrated directly that two like charges repel each other with a force that varies inversely
with the square of the distance between them. Then, the law of attraction between unlike
charges was indirectly demonstrated through what was thought to be an improperly functioning
torsion balance, although Coulomb did write in his memoirs that he in fact had been able to
test the law between unlike charges by use of the torsion balance. From his results, which are
widely discussed in many books and reviews, Coulomb unequivocally established the distance
dependence of the electric force.

During the next 40 years after the publication of Coulomb’s memoirs on electrostatics,
his findings were strongly disputed (Heering 1992), especially in Germany. The main reason
for this was that his inverse square law happened to take the same form as Newton’s inverse
square law of gravitation. Several critical physicists, such as Simon, Volta and Oersted,
raised strong opposition to Coulomb’s law. The experiments Coulomb claimed to have
performed successfully in his memoirs were repeated, but none of Coulomb’s contemporaries
succeeded in reproducing his results. Some then preferred to believe that Coulomb did not
actually arrive at the inverse square law via a series of doubtful measurements made with his
torsion balance, but instead developed it only from theoretical considerations. There were then
attempts to replace Coulomb’s relationship with alternative formulations, but eventually the
true inverse square nature of the electrostatic force became generally accepted and posterity
has given it his name.

4.3.2. General method and technical background. The distance dependence of the electro-
static force was expressed quantitatively by Cavendish and Coulomb in terms of the inverse
square law. Through Gauss’s law and the divergence theorem, this law leads to the first
of Maxwell’s equations, which defines the relationship between the electric field and local
charge density. However, if the photon has mass, an additional term is required which changes
Maxwell’s equations to those of Proca. From the time of Cavendish onwards, Coulomb’s
inverse square law was tested in novel experiments employing ever more sophisticated tech-
niques. As a result, methods of finding deviations from Coulomb’s inverse square law via
laboratory methods subsequently set the most precise bounds on the size of the photon mass
as compared to other larger-scale methods. The original experiments had an accuracy of only
a few per cent and were of laboratory scales of length. Experiments with higher precision
and involving a wider range of lengths were then performed thereafter (Goldhaber and Nieto
1971b, 1976). It is now customary to quote the tests of the inverse square law in one of the
following two ways (Jackson 1975):

(a) Assume that the force varies with the distance r between two point charges as per the
phenomenological formulation r−2±q , and quote a value or limit for q which represents
the departure from exact inverse square law behaviour.

(b) Assume that the electrostatic potential has the ‘Yukawa’ form r−1 exp(−µγ r) instead
of the simple Coulomb form r−1, and quote a value or limit for µγ or µ−1

γ . Since
µγ = mγ c/h̄, tests of the inverse square law are often then expressed directly in terms of
an upper limit on the photon rest mass. The results of geomagnetic and extra-terrestrial
experiments are typically also given in terms of µγ or mγ , while laboratory experiments
are often interpreted in terms of both q and µγ or mγ .
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Figure 4. A uniformly charged spherical shell is broken into rings for obtaining the electrostatic
potential at point P, which is located a distance r from the centre of the shell. A total charge Q

resides on the spherical shell of radius a.

Experimental studies of the photon rest mass or, equivalently, searches for deviations
from Coulomb’s law are to some extent made difficult because, for an experiment confined to
dimension D, the effects of finite µγ are of the order (µγ D)2, as propounded in a theorem
proposed by Goldhaber and Nieto (1971b). This means that an experiment designed to find
the effects of a massive photon or of a breakdown of Coulomb’s law must either interrogate a
region of size comparable to µ−1

γ or it must have extraordinary precision to detect the otherwise
infinitesimal evidence of photon mass or such a deviation. The concentric sphere experiments
originated by Cavendish, which are the typical apparatus used frequently by his successors,
exemplify the progress made in increasing the detectability of weak signals using apparatus with
enormous sensitivity, which has been achieved through technological development. The
principal advantage of this method is that all the parameters involved can be individually
varied and tested, whereas astronomical methods usually involve a number of factors that are
subject to assumptions and interpretations that are difficult to verify.

4.3.3. Static experiments. The original concentric spheres experiment performed by
Cavendish in 1773 gave an upper limit on q of |q| � 0.02, and this result was improved
to |q| � 5 × 10−5 in 1873 by Maxwell. The corresponding limits on the photon rest mass are
1 × 10−40 g and 5 × 10−42 g, respectively, as was mentioned above. In these experiments the
electric potential on the inner conducting sphere was measured. From the value of this potential
and the relation between q and the potential, Maxwell (1873) first derived expressions for the
size of possible deviations from pure inverse square behaviour, and a more detailed attempt at
this task was undertaken much later by Fulcher and Telljohann (1976) and by Fulcher (1986),
the results of which then became the general frame of reference for later interpretation of
similar laboratory experiments (Zhang 1998). In what follows, we will briefly deduce the
electrostatic potential of a uniformly charged spherical shell, and then from this deduction,
we will show how the potential difference of two or more concentric spherical shells can be
obtained.

Suppose that the electrostatic force between two unit charges is an arbitrary function F(r)

of the distance r between them. The electrostatic potential is given by

U(r) =
∫ ∞

r

F (s) ds. (4.5)

Now, consider a uniform distribution of charge Q over a spherical shell of radius a and break the
spherical shell into rings of thickness a dθ , as shown in figure 4. Then, the differential element
of charge for a chosen ring is given by dq = (Q/4πa2) · 2πa2 sin θ dθ = (Q/2) sin θ dθ ,
which produces the potential dV = (Q/2) sin θ dθU(r ′) at point P with an interval r ′ between
the corresponding rings. As shown in figure 4, we have the relation: r ′2 = r2 + a2 − 2ar cos θ ,
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Figure 5. A model of two concentric spherical shells used in Cavendish type experiments for
testing Coulomb’s inverse square law. A charge Q1 resides uniformly on the inner shell, which
has radius R1, and a charge Q2 is on the outer shell, of radius R2.

then r ′ dr ′ = ar sin θ dθ . So the potential at a distance r from the centre of the shell is readily
determined as

V (r) =
∫

Q

2
sin θ dθU(r ′) = Q

2ar
[f (r + a) − f (|r − a|)], (4.6)

where

f (r) ≡
∫ r

0
sU(s) ds. (4.7)

Let us then apply these expressions to the experiments of Cavendish type, and suppose that the
radii of the two concentric spheres are R1 and R2 (R1 < R2) with charges Q1 and Q2 spread
uniformly over them, respectively (as shown in figure 5). Using equation (2.6), one finds the
potential on the inner shell to be

V (R1) = Q1

2R2
1

f (2R1) +
Q2

2R1R2
[f (R1 + R2) − f (R2 − R1)], (4.8)

while the potential on the outer shell is

V (R2) = Q2

2R2
2

f (2R2) +
Q1

2R1R2
[f (R1 + R2) − f (R2 − R1)]. (4.9)

After charging the outer shell to a potential of V0, a part of the charge would pass through
the connecting wire to the inner shell until an equilibrium of V (R1) = V (R2) ≡ V0 was
reached. Then, the charge accumulated on the inner shell can be found from equations (4.8)
and (4.9) as

Q1 = 2R1V0
R1f (2R2) − R2[f (R1 + R2) − f (R2 − R1)]

f (2R1)f (2R2) − [f (R2 + R1) − f (R2 − R1)]2
. (4.10)

If Coulomb’s law is correct, the electric potential has the form of U(r) = r−1; hence f (r) ≡ r .
Because the two shells had been connected by a conducting wire, the charge originally given to
the inner shell will end up at the outer surface of the outer one, i.e. Q1 = 0, which is the natural
consequence of Coulomb’s r−2 law. Actually, for a conductor of arbitrary shape, the charge
distribution is so arranged that the electric field inside the conductor vanishes, and the time
constant to establish electrostatic equilibrium is very short (of the order of 10−19 s). The aim
of experimental verifications of Coulomb’s law is to find traces of the residual fields between
the shells.

In the Cavendish experiment, after the two shells were charged and the interconnection
was broken, the outer shell was removed to infinity. According to equations (4.8) and (4.10),
the potential of the inner shell would then be

VC(R1) = Q1

2R2
1

f (2R1). (4.11)
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Figure 6. The geometrical factor M(R1, R2) for concentric spherical shells varies monotonically
with the ratio of the radii, R1/R2 (R1 < R2), and has its extremum at Mmax (R1/R2 = 0) = 0.3069
and Mmin (R1/R2 = 1) = 0.

In Maxwell’s case, after the interconnection was broken, the outer shell was then earthed instead
of being taken away, which meant V (R2) ≡ 0. So with the help of equations (4.8)–(4.10), the
potential on the inner shell could then be expressed as

VM(R1) = V0

[
1 −

(
R2

R1

)
f (R2 + R1) − f (R2 − R1)

f (2R2)

]
. (4.12)

Following Maxwell, suppose that the exponent in Coulomb’s inverse square law is not 2 but
2 + q with |q| � 1. In that case, for a unit point charge, we have

U(r) = 1

1 + q

1

r1+q
≈ 1

r1+q
(4.13)

and to first order in q,

f (r) ≈ r(1 − q ln r). (4.14)

Substituting (4.14) in (4.11) and (4.12), the link between the potential and the deviation q would
arise from the following formulae in the experiments of Cavendish and Maxwell, respectively:

VC(R1) ≈
(

R2

R2 − R1

)
qV0M(R1, R2), (4.15)

VM(R1) ≈ qV0M(R1, R2), (4.16)

where M(R1, R2) is a dimensionless geometrical parameter of order unity and its characteristic
curve is shown in figure 6, and

M(R1, R2) = 1

2

[
R2

R1
ln

R2 + R1

R2 − R1
− ln

4R2
2

R2
2 − R2

1

]
. (4.17)

Obviously, if q = 0, the potential of the inner sphere is also zero, which is the case predicted
by Coulomb’s inverse square law. So, by detecting the potential on the inner shell directly,
one could obtain the deviation from Coulomb’s inverse square law.

The main hindrance to further improvement in static experiments of this type are contact
potentials (Camp et al 1991). Contact potential is an electrostatic potential difference between
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two metals caused by their different work functions, which are the energies needed to remove
an electron from the metal (Michaelson 1977). In some modern precision experiments, such as
measurements of the Casimir force, contact potentials have generally been proven to be of the
order of several millivolts for dissimilar metals or coated metal media (Bordag et al 2001), and
in the worst case, even up to a ‘shockingly large’ value of 430 mV (Lamoreaux 1997). This
problem no doubt arose in the experiments of Cavendish and Maxwell, as they used contacting
leads to measure the potential at different points on the shells. This problem is overcome in
dynamic experiments by measuring the potential difference instead of the potential itself.

4.3.4. Dynamic experiments. In order to obtain a higher precision, modern experiments using
the concentric shell arrangement of Cavendish were carried out with high voltage ac signals
applied to the outer shell and with phase-sensitive detection used to sense the relative potential
difference between the shells. Moreover, the motivation for concentric-shell experiments
had by then become predominated mainly by interest in the photon rest mass as opposed to
simply testing the exactness of the inverse square law. For this type of experiment, the relative
difference of potential between the two spheres, according to equations (4.6) and (4.14), can
be expressed as

V (R2) − V (R1)

V (R2)
= qM(R1, R2), (4.18)

where the geometrical factor M(R1, R2) is the same, so that q is essentially the quotient of
the measured potential difference V (R2) − V (R1) and the applied voltage V (R2). With the
expected relation between the potential difference and the deviation q the next step is one of
finding the link between µγ and the potential difference.

Consider an idealized geometry of two uncharged, concentric, conducting spherical shells
of radii R1 and R2(R1 < R2) with an inductor across this spherical capacitor. An alternating
potential of V0 exp(iωt) is then applied to the outer shell so that V (R2) = V0 exp(iωt). For
this case, a solution to the massive photon electromagnetic field equation (2.5) can be written
as φ(r, t) = φ(r) exp(iωt) and the wave equation reduces to

(∇2 + k2)φ(r) = 0, (4.19)

where

k2 = ω2

c2
− µ2

γ . (4.20)

With the proper boundary conditions, the exact result for the potential is

φ(r) = V0
R2

r

eikr − e−ikr

eikR2 − e−ikR2
(r � R2). (4.21)

Choosing a spherical Gaussian surface of radius r between the two shells and then using
equation (4.21) for the interior region, the closed integral of the Proca equation (2.7) over the
volume from the interior to the Gaussian surface becomes∫

dV ∇ · E = −µ2
γ

∫
dV · φ (r). (4.22)

Given this, a complete solution for the field inside a uniformly charged single sphere of radius
R2 can then be written as

E(r, t) = µ2
γ

k2r2

V0R2

eikR2 − e−ikR2
[ikr(eikr + e−ikr ) − (eikr − e−ikr )]eiωt · r

r
. (4.23)
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Figure 7. Experimental arrangement used by Plimpton and Lawton in 1936 for testing the inverse
square law of the force between charges. The outer shell was formed from two approximately
hemispherical shells, while the inner one consisted of a (lower) copper box containing the detector
and a hemispherical dome above it. A specially designed condenser generator generated a 3000 V
signal, which was applied to the outer shell. Any movement of the galvanometer is monitored by
the mirror and the telescope through the conducting window.

A power series expansion of the electric field for kr < 1 and ω > µγ c yields

E(r, t) = −1

3
µ2

γ rV0eiωt

(
1 − 1

10
k2r2 +

1

6
k2R2

2 − · · ·
)

r
r
. (4.24)

The higher-order terms can be neglected for these experiments, and the above electric field can
then be written as

E(r, t) ≈ −1

3
µ2

γ rV0eiωt r
r
, (4.25)

which indeed leads to ∇ × E = 0, and hence
∮

E · dl = 0. With this, the potential difference
between the inner and outer shells becomes,

V (R2) − V (R1) =
∫ R2

R1

E · dl = −1

6
µ2

γ (R2
2 − R2

1)V (R2) (4.26)

and the relative potential difference between the two spheres is

V (R2) − V (R1)

V (R2)
= −1

6
µ2

γ (R2
2 − R2

1). (4.27)

This result demonstrates clearly that the relative potential difference �V /V is independent
of the frequency of the applied alternating voltage, i.e. the boundary condition problems in
the dynamic experiments are the same as those in the static experiments. A second look at
equation (4.27) hints that the quadratic dependence of the potential difference on µγ makes
this method rather insensitive to small values of µγ .

The first dynamic experimental test of Coulomb’s law can be dated back to Plimpton and
Lawton (1936). The concentric shell electrostatic experiments of Cavendish and Maxwell were
replaced by a quasi-static method, in which the problems due to spontaneous ionization and
contact potentials were overcome by placing the detector inside the inner sphere and connecting
it permanently so as to detect any change in the potential of the inner sphere relative to the
outer one (as shown in figure 7). The detector was a resonance electrometer operating at a
frequency of ≈2 Hz, which led to improved sensitivity and to reduced inductive effects which
had arisen by simply opening and closing the circuits for the applied voltage on the outer
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globe. The resonant motion of the galvanometer was produced by the potential difference
between the outer globe and inner dome of the apparatus, and this motion could be observed
via a mirror and telescope, which monitored it through a conducting window at the top of the
outer globe. The conducting window, claimed by Plimpton and Lawton to be essential to the
success of the method, was a glass-bottomed vessel threaded into the outer globe such that its
surface was flush with the top surface of the outer globe. It contained a solution of ordinary
salt in water. A disc of fine wire gauze covered the glass and was soldered to the threaded
rim of the vessel, thus improving the electrical conductivity of this window. A harmonically
alternating potential of about 3000 V, produced by a specially designed condenser generator
operating at the low resonance frequency of the galvanometer, was applied to the outer globe.
Tests were then made to detect the change in the potential of the dome relative to the outer
globe. The results showed that no change in the thermally driven motion of the galvanometer
could be detected during the course of the experiment, at a detector sensitivity of 1 µV. The
radii of the two globes were 0.76 m (2.5 ft) and 0.61 m (2.0 ft), respectively. Substitution of the
experimental parameter into the equations (4.18) and (4.27) then yielded a limit on the size of
the deviation from Coulomb’s inverse square law of q < 2 × 10−9 and a corresponding limit
on the photon rest mass of mγ < 3.4 × 10−44 g.

Cochran and Franken (1968) employed concentric cubical conductors instead of concentric
spheres due to the cost and awkwardness of constructing and using large spheres. The most
significant improvement in their experiment, compared with that of Plimpton and Lawton,
was the application of a lock-in amplifier for detecting minute potential differences between
the conducting surfaces. The sensitivity of their system was such that they could see changes
in amplitude of 2 × 10−9 V. A signal of ≈1200 V ac with frequencies ranging from 100 to
500 Hz was applied to the outer box. The authors quoted two values for the deviation q

from exact inverse square law behaviour. The first bound was derived from the worst-case
error limit, |q| < 4.6 × 10−11, and the second was for the case of a probable error of 70%,
|q| < 9.2 × 10−12. The latter gave a corresponding bound of mγ � 3 × 10−45 g on the photon
rest mass. The complicated calculations arising from the cubical configuration of the apparatus
makes analysis of this experiment difficult.

An improvement to the experiment of Plimpton and Lawton was reported by Bartlett and
Phillips (1969) and Bartlett et al (1970). Instead of two concentric spheres, their approach
adopted five concentric spheres in order to improve the sensitivity and to help eliminate errors
introduced by stray charges. The voltage was applied between the two outermost shells, and
the induced signal between the two innermost shells was then measured. The middle one
served as a shield. A potential difference of 40 kV at 2500 Hz was used between the two
outer spheres. A lock-in detector with a sensitivity of ≈0.2 nV served to measure the potential
difference between the two inner spheres. They arrived at a final result of |q| � 1.3 × 10−13,
with the associated limit on the photon rest mass being mγ � 3 × 10−46 g.

The experiment of Williams et al (1970, 1971) was designed to operate at exceptionally
high sensitivity. A diagram of the apparatus is shown in figure 8. It consisted of five concentric
icosahedrons. The two outermost shells were charged by 10 kV at 4 MHz; the inner shell was
≈1.5 m thick. A battery-powered lock-in amplifier with a detection sensitivity of ≈10−12 V
was employed to continuously detect the line integral of the electric field between the two
innermost shells. Three sets of optical fibres were used to convey the data through small
apertures in the icosahedrons. In order to prevent penetration of external fields through
these holes, the fibres served as waveguides, with their diameters being smaller than the
cutoff frequency. The middle shell also served to reduce the effects of stray electric and
magnetic fields. To ensure that the system functioned properly, optical calibration signals were
periodically introduced as tests. The high frequencies used in this experiment were chosen to
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Figure 8. Experimental arrangement used by Williams et al in 1971 at Wesleyan University. An ac
signal of 10 kV peak-to-peak at 4 MHz was applied across the two outer shells, which along with a
high-Q water-cooled coil, formed a resonant circuit. A battery-powered lock-in amplifier, located
inside the innermost shell, was used to search for any trace of this signal appearing across the two
inner shells. Three sets of optical fibres were used for transmitting the data, which consisted of the
reference signal for the phase detector, the output of the voltage-to-frequency converter (VFC) from
the lock-in amplifier and a calibration voltage that was introduced periodically into the system. The
output signal was analysed for evidence of a violation of Coulomb’s law, which would have been
the signature of a photon mass.

reduce the skin depth effects, which vary as δ ∝ ω−1/2. Three-day data series yielded results
that were statistically consistent with the assumption that the photon rest mass is identically
zero. Expressing the results as a deviation from Coulomb’s law in the form of r−2−q , they
found q � (2.7 ± 3.1)×10−16 and the limit on the photon rest mass was mγ � 1.6×10−47 g.
This experiment also ruled out a theoretically predicted value for the deviation of Coulomb’s
law suggested by Zygan (1970a,b).

The most recent Coulomb null experiment using a principle similar to these was proposed
in 1982 by Crandall, who designed the experiment such that it could be carried out by physics
students at several different college levels, thus allowing for the apparatus to be improved
gradually with each class. The main difference between this and earlier experiments was the
use of a three-shell arrangement instead of five, with the geometry optimized for use in this kind
of teaching-tool arrangement. The radii of the three icosahedral shells were 0.2, 0.5 and 1.0 m.
In this arrangement, the 500 V peak-to-peak signal was applied to the two innermost shells at
a frequency of 500 kHz. Crandall and his collaborators obtained improved results with this
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Table 2. Results of experimental tests of Coulomb’s law and the photon rest mass.

Author (year) Experimental scheme Deviation q Limits on mγ g

Robison (1769) Gravitational torque on a 6 × 10−2 4 × 10−40

pivot arm
Cavendish (1773) Two concentric metal shells 2 × 10−2 1 × 10−40

Coulomb (1785) Torsion balance 4 × 10−2 ∼10−39

Maxwell (1873) Two concentric shells 5 × 10−5 1 × 10−41

Plimpton and Lawton (1936) Two concentric shells 2 × 10−9 3.4 × 10−44

Cochran and Franken (1967) Concentric cubical conductors 9.2 × 10−12 3 × 10−45

Bartlett et al (1970) Five concentric shells 1.3 × 10−13 3 × 10−46

Williams et al (1971) Five concentric icosahedrons (2.7 ± 3.1) × 10−16 1.6 × 10−47

Fulcher (1985) Improved result for Williams’ (1.0 ± 1.2) × 10−16 1.6 × 10−47

experiment
Crandall (1983) Three concentric icosahedrons 6 × 10−17 8 × 10−48

Ryan et al (1985) Cryogenic experiment (1.5 ± 1.4) × 10−42

approach, finding q � 6 × 10−17 for the deviation from Coulomb’s law and mγ � 8 × 10−48 g
for the photon rest mass.

4.3.5. Other experiments. In 1985, a very different method of searching for the photon mass
via Coulomb’s law was developed for use at a temperature of 1.36 K by Ryan et al (1985).
The idea underlying this search for the photon mass was that the particle was massless above
a critical temperature but would acquire a mass below this temperature. Their null result
established that the photon at 1.36 K had a mass of less than (1.5 ± 1.4) × 10−42 g. Although
this was not as low a limit as had been found in some of the other experiments, it was a unique
contribution because of the low temperature ranges involved.

The results of all the experiments in this class of tests of Coulomb’s law are listed in table 2,
for ease of comparison. Because Coulomb’s law is so fundamental to electromagnetism it is
always of interest to improve the limits over which it is known to hold. The experimental
results discussed above reveal that the validity of its inverse-square nature is unassailable at the
macroscopic level, and as we shall see later in the review, it is known to hold over distances
ranging up to 1013 cm. In the microscopic regime, the well-known Rutherford experiments on
the scattering of alpha particles by thin metal foil gave early indications that Coulomb’s law is
valid at least down to distances of about 10−11 cm, nearly the size of the nucleus. Modern high
energy experiments on the scattering of electrons proved that Coulomb’s inverse square law
holds even down to the Fermi scale (Breton et al 1991). When viewed collectively, the evidence
from all these experimental results shows that Coulomb’s law is valid from the macroscopic
to the quantum domains, a range covering roughly 26 orders of magnitude in distance. While
this represents an impressive scale by any measure, it is nevertheless still finite, and no doubt
others will work to extend it.

4.4. Tests of Ampère’s law

According to the Proca equations, if the photon rest mass is different from zero, not only
electrostatic fields but also magnetostatic fields take on the character of exponential decay and
vanish at distances of the order of µ−1

γ , in contrast to the cases where they would extend to
infinity, as in Maxwell’s electrodynamics. A null experiment that served as a laboratory test
of Ampère’s law was carried out by Chernikov et al in 1992, and it is of interest in that regard.
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In the case of a nonzero photon mass, and in the quasi-static limit, the magnetic field obeys
the relation

∇ × B = µ0 J − µ2
γ A. (4.28)

Their experimental test of Ampère’s law was based on a measurement of the line integral of B
along a closed curve C, which, in the case of mγ �= 0, becomes∮

B · dl = µ0

∫
C

J · df − µ2
γ

∫
C

A · df. (4.29)

So, if one chose a coil configuration for which no current passes through a surface bounded
by the closed curve C, there would automatically be a null result if Ampère’s law were indeed
valid. Using a very sensitive superconducting quantum interference device (SQUID) as a
magnetometer (Gerber et al 1993) to detect changes of magnetic flux at low temperatures
(1.24 K), Chernikov et al found no distinct magnetic-flux change that could account for a
photon mass. The experimental result was mγ � (8.4 ± 0.8)×10−46 g, which was a limit that
was substantially less stringent than those derived from the null tests of Coulomb’s law, but
nevertheless of interest because it was obtained via a different physical approach. Moreover,
since large-scale investigations of magnetostatic phenomena usually involve astronomical
observations, which will be discussed in the next section, a laboratory experiment of this
type is particularly helpful in establishing range-related limits.

4.5. Torsion balance methods

The application of torsion balance techniques for detecting the photon mass was proposed
in 1998 by Lakes. In a Proca field, the potentials themselves have physical significance,
instead of just their derivatives. The large cosmic magnetic vector potential, A, described by
the Proca equations is observable since the potential acquires an energy density µ2

γ A2/µ0.
Lakes (1998) reported an experimental approach based on a modified Cavendish balance
to evaluate the product of photon mass squared and the ambient cosmic magnetic vector
potential. The basic idea was to generate a magnetic-dipole vector-potential moment ad via
a suspended toroidal coil. This moment interacts with the ambient cosmic magnetic vector
potential to produce a torque τ = ad × µ2

γ A on the torsion balance. The component along
with the fibre (i.e. along the z direction in the laboratory frame) can be written as follows
(Luo et al 2000, 2003):

τz = Aµ2
γ ad(cos θ cos θA cos λ − cos θ sin θA sin �t sin λ − sin θ sin θA cos �t), (4.30)

where θ is the angle between the latitude and ad in the laboratory frame, θA the angle between
A and the Earth’s rotation axis, λ the latitude and � the rotation frequency of the Earth. The
contribution to the magnetic vector potential from sources outside the solar system, within the
laboratory frame of reference, will vary sinusoidally with time, one cycle per sidereal day, as a
result of the rotation of the Earth. This was the case considered by Lakes, and he found a limit
of µ2

γ A < 2×10−9 Tm m−2, with a corresponding limit on the photon mass of 2×10−50 g, for
an ambient magnetic vector potential of A ≈ 1012 Tm due to cluster-level fields. However, if
sin θA = 0, which would mean that the cosmic ambient vector potential is fortuitously aligned
with the Earth’s rotational axis, then this approach would fail.

An improved experiment, designed to overcome the direction dependence of the torsion
balance method, was performed by Luo et al in 2002. A schematic diagram of the rotating
torsion balance system used in it is shown in figure 9. In this experiment, the motion of the
torsion balance is modulated by a turntable rotating at an angular frequency ω (let θ = ωt in
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Figure 9. The experimental setup of the rotating torsion balance of Luo et al (2003). A steel toroid,
having an inner diameter of 45.0 mm, with a cross section 24.0 mm in diameter, was suspended by
a tungsten fibre 100 µm in diameter and 136.4 cm in length to form a Cavendish torsion balance.
A coil of 1720 turns was wound on the steel toroid, and it carried an electric current of 16.4 mA,
which was supplied by a constant-current source through a fine aluminium spring. The magnetic
dipole vector-potential moment, ad arising from the toroidal coil interacted with the cosmic vector
potential, A, to produce a torque on the torsion balance, the motion of which was detected by an
optic lever, with the data then collected continuously by a host computer. Any external torque was
compensated by a capacitive transducer such that the torsion balance was always maintained in
its initial equilibrium state through the parallel capacitor plates. The whole system was mounted
in a vacuum chamber and held at 1 × 10−2 Pa and was rotated with a period of 1 h by means of
a precise rotary table (not shown in this figure). If the photon mass were nonzero, the feedback
voltage applied on the capacitive transducer, associated with the effect of photon mass, would vary
with time, following the rotation of the torsion balance.

equation (4.30)), which was usually higher than the Earth’s rotational frequency �. In this
case, the torque acting on the torsion balance can be written as

τz(ω) = µ2
γ AadC cos(ωt + θ0), (4.31)

where

C2 = (cos θA cos λ − sin θA sin �t sin λ)2 + (sin θA cos �t)2. (4.32)

The parameter C in (4.31) is clearly time dependent and hence τZ will have a time-varying
amplitude. If θA = 90˚, then the frequency of τZ , the signal to be determined, will contain
sum and difference terms of the turntable and the sidereal rotation frequencies. In the most
general case (θA �= 90˚), τZ will have a constant component at the turntable frequency in
addition to the variable components at the other frequencies mentioned above. This means
that at least three peaks will be seen in the power spectrum produced by a fast Fourier transform
(FFT) of the experimental data. To estimate the magnitude of C, they averaged it over a sidereal
period (24 h) and found its root-mean-square (RMS) value to be

C̄ =
√

〈C2〉 =
√

3

4
− 1

8
sin2 θA �

√
10

4
. (4.33)
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A nonzero C̄ means that the modulation method can ensure effective detection for all possible
orientations of the ambient cosmic vector potential during a sidereal day. Moreover, the
limitation from 1/f noise will be reduced and the sidereal noises due to environmental
fluctuations will be essentially eliminated because of the high modulation frequency. Their
analysis of the experimental data (72 h) showed that the product of photon mass squared and
the ambient vector potential was µ2

γ A < 1.1 × 10−11 Tm m−2. If the ambient cosmic vector
potential is 1012 Tm, corresponding to the Coma galactic cluster (0.2 µG over a distance of
4×1022 m) (Rand and Kulkarni 1989, Zwiebel 1991), then the upper limit on the photon mass
would be 1.2×10−51 g. However, the cosmic vector potential can be conservatively estimated
from the galactic magnetic field (≈1 µG) and its reversal position (≈1.9 × 1019 m) towards
the centre of the Milky Way (Asseo and Sol 1987). In that case, A ≈ 2 × 109 Tm and the
corresponding upper limit on the photon mass becomes 2.6 × 10−50 g.

After the result of the rotating torsion balance experiment was published, Goldhaber and
Nieto (2003) commented on a potential problem with the use of this approach to setting limits
on the photon rest mass. They pointed out that the typical value of the ambient magnetic vector
potential A could vanish, or at least be much smaller, in a particular measurement region, and
if we happened to be in such a vacant zone, the magnitude of A at our location might not lead
to a useful constraint on mγ . They further noted that the plasma current method (discussed in
section 5.4) could overcome this problem. The main difference between the torsion balance
and plasma current methods is the region involved: the former interrogates a relatively small
local region while the latter surveys on a large astronomical scale. At present, incomplete
knowledge of the largest-scale magnetic fields (i.e. at the galactic or even extragalactic level)
indeed introduces the possibility of substantial inhomogeneity both in the fields themselves
and in the plasma density. Furthermore, uncertainty about the degree of inhomogeneity in the
Coma cluster or even in our local galactic cluster makes it hard to quote a typical value for A,
let alone the systematic uncertainty in it. So, while the results of the torsion balance method
indeed gave a value for the local limit on µ2

γ A, when used to deduce a limit on the photon mass
the result is open to question.

4.6. Other approaches

In 1971, Franken and Ampulski proposed a ‘table-top’ experiment with very low-frequency
parallel resonance circuits to set an upper limit on the photon rest mass. They contended that
the relationship between the resonance frequency of the LC circuit and the photon rest mass
would be governed by

ω′2 = ω2
0 + ω2

c , (4.34)

where ω0 is the natural resonance frequency in the zero-mass photon case, which could be
calculated theoretically, and ωc = µγ c. From measurements on such a circuit operating at
a frequency of ≈1 rad s−1, they obtained a result of mγ < 10−49 g. However, as pointed out
by Goldhaber and Nieto (1971a,b), the crucial problem inherent in this method is that the
natural resonant frequency ω0 = (LC)−1/2 cannot be shifted by more than a fraction of order
(µγ D)2, where D denotes the dimension of the apparatus. This is because the fields acting
on charges and currents in the circuit are only changed by this amount compared with those
of the massless photon case. So, the resonance at ω = µγ c would occur for ω0 ≈ µγ c, not
ω0 = 0, which means that the photon mass effect in the resonant circuit method is practically
negligible. The same conclusion was also reached by Park and Williams (1971), Kroll (1971)
and Boulware (1971).
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5. Extra-terrestrial limits on the photon mass

5.1. General introduction

It is arguably the case that most physicists now believe that the photon rest mass is exactly zero.
All of the experiments undertaken to date have led only to ever more stringent limits on it, and
it is tempting to think that the experimental possibilities in terrestrial laboratories are close to
being exhausted. A trend towards using astrophysical methods to reduce the upper limit on
the photon rest mass was begun in the 1960s. The basic idea is to find some possible effects
of massive photons in a large scale, which might lead to consequences indistinguishable from
Maxwellian electromagnetism for phenomena that occur on those scales. In this section, we
will discuss the possible astrophysical and cosmological manifestations of a nonzero photon
rest mass. Previous discussions of these topics and reviews in this area have been written by
Kobzarev and Okun (1968), Goldhaber and Nieto (1971b), Chibisov (1976), Byrne (1977),
Dolgov and Zeldovich (1981), Barrow and Burman (1984), and Zhang (1998), among others.

5.2. Dispersion of starlight

Because of intrinsic measurement uncertainties, laboratory investigations of the frequency-
dependent dispersion of light under terrestrial conditions have probably reached the limits of the
technique. However, because of the great distances involved, astrophysical measurements held
promise of improved accuracy. So, efforts were undertaken to search for traces of dispersion
arising from a mass of the photon, in cases where the photons were created in astrophysical
events. Equation (3.6) shows that a limit on the photon mass could be obtained by comparing
the arrival times of pulses of different frequencies that were emitted from the same origin.
De Broglie (1940) suggested that observation of the dispersion of radiation from astronomical
objects undergoing rapid fluctuation, such as eclipsing binary stars, a pulsar, a supernova, or
a quasar, could provide information on the photon rest mass. Specifically, he suggested that a
limit on the photon mass could be determined by using light from a star emerging from behind
its dark binary companion. He considered the case λ2

2 − λ2
1 = 5 × 10−13 m2 (for instance, red

light of λ2 ∼ 800 nm and blue light of λ1 ∼ 400 nm), L = 103 light years, and �t � 10−3 s.
According to equation (3.6), one can obtain (Kobzarev and Okun 1968)

mγ ≡ h̄

c
µγ ≈ h̄

c

√
8π2c�t

L(λ2
2 − λ2

1)
� 8 × 10−40 g.

We note that dispersion effects of this kind can be interpreted not only in terms of a photon
mass but also in terms of nonlinear effects of electromagnetic fields or the dispersion of light
travelling through interstellar plasma in a magnetic field. In fact, these alternative scenarios
present the main obstacle in using the technique to determine the photon rest mass more
stringently (Gintsburg 1963).

In Maxwellian electromagnetism, the dispersion equation for an electromagnetic wave of
frequency ω travelling through plasma is (Goldhaber and Nieto 1971b)

k2 = ω2

c2

(
1 − ω2

p

ω2 ± ωB

)
; (5.1a)

with

ω2
p = 4πne2

m
, ωB = eB

mc
cos α, (5.1b)

in which n is the electron (mass = m) density, α is the angle between the magnetic field B

and the direction of propagation of the wave, and ωp and ωB are the characteristic frequencies
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of the plasma and the cyclotron frequency of the electron, respectively. Since the magnetic
field B is small in interstellar space, the quantity ωB can be neglected, and the result is then a
dispersion similar to the massive photon effect:

vg = dω

dk
= c

√
1 − ω2

p

ω2
≈ c

(
1 − ω2

p

2ω2

)
. (5.2)

Comparison of equations (3.4) and (5.2) shows that the dispersion resulting from the plasma
electron density would produce the same effect as the photon mass µγ , i.e. that the effect of
ωp is the same as that of µγ c on the dispersion of the speed of electromagnetic waves. Hence,
to establish an improved limit on the photon mass by this method, more careful investigations
of the plasma in interstellar space would be needed.

The discovery of pulsars provides a way of determining the photon mass by means of
a measurement of dispersion in arrival time of radio signals from the pulsars, as mentioned
above. A critical parameter in formulating such an estimate is n̄e, the average density of
electrons along the path. An approximate formula for plasma-based dispersion is (Feinberg
1969)

4πn̄ee
2

me
= ω2

p � ω2. (5.3)

Hence, according to equations (5.2) and (5.3), and disregarding higher order terms, one obtains
an expression for the dispersion for pulsars with different frequencies:

�vg

c
≡ vg1 − vg2

c
≈ 2πn̄ee

2

me

(
1

ω2
2

− 1

ω2
1

)
. (5.4)

One possible source of the variation of speed with frequency would arise from photons with
mass mγ . For this case, and recalling equation (3.4), we have

vg

c
=

√
1 − m2

γ c4

h̄2ω2
≈ 1 − 1

2

m2
γ c4

h̄2ω2
. (5.5)

It is obvious that the variation with frequency due to a photon mass is greatest at small
frequencies, thus making propagation at radio frequencies a much more sensitive test of this
effect than propagation at optical frequencies. The dependence on frequency is the same as that
obtained for plasma dispersion. So, if the plasma has a particle density that exactly cancels
the effect induced by the photon mass, we cannot measure the dispersion unambiguously.
In this case, if we could place an independent limit on the density of the interstellar plasma, we
could place the same limit on the photon mass. Incorporating the two effects (equations (5.2)
and (5.5)), Feinberg was able to write

vg

c
≈ 1 − 1

2

(
m2

γ c4

h̄2 + ω2
p

)
1

ω2
. (5.6)

Since the index of refraction is much greater for radio frequencies than for optical frequencies,
Feinberg assumed that a substantial part of the observed dispersion would be due to the photon
mass effect, and by equating the photon mass and the plasma frequency with which the radio
dispersion has been fitted, he arrived at

mγ � h̄ωp

c2
= h̄

c2

√
4πe2n̄e

me
= 6 × 10−44

√
n̄e.

Staelin and Reifenstein (1968) observed the dispersion of radio signals from the Crab Nebula
pulsar (NP0532), and found (assuming zero mass for the photon) an effective average plasma
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density of n̄e � 0.028 electron cm−3. Using a number such as this, one can easily set a limit
on the photon mass of mγ � 10−44 g.

This approach for setting limits on the photon rest mass is obviously quite dependent on
the available values of n̄e that can be used with the pulsar under study, and unfortunately there
is not a great deal of relevant existing data (Fabian and Barcons 1991). However, the model
is, nevertheless, quite useful, and to the extent that new independent measurements of n̄e can
be made, it may be possible to confirm the speculation that the intergalactic electron density
is very small, thus perhaps leading to a more stringent limit on mγ .

5.3. Magnetostatic effects

One of the most direct consequences of a nonzero photon rest mass arises from its effect on the
characteristics of static magnetic fields. As discussed below these effects differ distinctly from
those of Maxwellian electromagnetism on length scales greater than the potential Compton
wavelength of the photon.

5.3.1. Schrödinger external field. In 1943, Schrödinger proposed a method for determining
the photon rest mass. For the case of electromagnetic fields of a certain strength in empty
space, and neglecting gravitation, his ‘unitary field theory’ (Schrödinger 1943a), which posited
interactions between gravitons, mesons and electromagnetic fields, suggested that the Compton
wavelength ‘be not cosmically large (in which case Proca’s equations boil down to Maxwell’s)
but very roughly speaking of the order of the radius of the earth’. In one of his companion
papers (Schrödinger 1943b) he placed an upper limit on the photon rest mass by examining a
modified version of Maxwell’s equations, and specifically Ampère’s law. The term that was
added acts like ‘vertical currents’, and by making a fit of the geological data he arrived at a
finite photon rest mass. An additional field of the same order of magnitude was also studied
by Bicknell (1977), who extended Schrödinger’s expression for a dipole field to all orders of
the multipole moments by a complete spherical harmonic analysis of static planetary fields.
However, Schrödinger pointed out that the effect he predicted could be produced by ‘positive
or negative particles revolving around the earth at some distance in the equatorial plane . . . ’.

In his discussion of geomagnetic surveys in 1895, Schmidt pointed out that the
geomagnetic field incorporates three types of magnetic fields: ‘dipole fields’, ‘external fields’
and ‘non-potential fields’ (Schrödinger 1943b). The magnetic dipole field, pointing to the south
geomagnetic pole, is produced by a magnetic dipole moment. The ‘external field’, antiparallel
to the dipole moment, is a uniform field over the surface of the earth, the origin of which
could not be inside the earth. The last type, the ‘non-potential field’, is produced by a constant
current. Subsequent geomagnetic surveys showed that a substantial part of the geomagnetic
field is caused by inner sources, i.e. the geomagnetic dipole, and that the external field and the
non-potential field accounted for roughly several per cent of the balance. Schrödinger (1943b)
argued that the external field ‘is that part which Maxwell’s theory is obliged to attribute to
external sources’, while the non-potential field ‘refers to the ostensible fact that closed line
integrals of the magnetic force do not vanish, which in Maxwell’s theory would indicate vertical
electric currents in the atmosphere, much stronger than can be accounted for by atmospheric
electricity or cosmic rays’. Based on his unitary field theory, Schrödinger examined at some
length the concept of a finite photon rest mass, and pointed out that a finite photon rest mass
effect could explain the existence of the ‘external field’ and the ‘non-potential field.’ His
analysis led to an upper limit on it of 2 × 10−47 g (Bass and Schrödinger 1955).

In order to explain the external field effect using the photon rest mass, let us begin with a
review of the principles on which the method is based. Consider a stationary current density J
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distributed over a small region V , which would generate a constant magnetic field. The massive
wave equation becomes

(∇2 − µ2
γ )A = −µ0 J. (5.7)

A standard solution to the equation is

A(r) =
∫

J(r′)G(r − r′) dr′, (5.8)

where G is the Green function with a form of Yukawa potential:

G(r − r′) = µ0

4π

exp(−µγ |r − r′|)
|r − r′| . (5.9)

Substituting the multipole expansion of the Green’s function in an area much larger than the
dimension of the area V into equation (5.8), one finds the magnetic dipole potential:

A(r) ≈ A(1)(r) = µ0

4π
∇ ×

(
m

e−µγ r

r

)
(5.10)

in which m is defined as a magnetic dipole moment

m = 1

2

∫
V

(r′ × J(r′)) dr′. (5.11)

Correspondingly, for a magnetostatic field, the field of a dipole is given by

H ≈ H(1) = ∇ × A(1) = µ0

4π
∇ × ∇ ×

(
m

e−µγ r

r

)
(5.12)

and hence

H ≈ H(1) = µ0

4π

e−µγ r

r3

{(
1 + µγ r +

1

3
µ2

γ r2

)
(3m · r̂r̂ − m) − 2

3
µ2

γ r2m
}

. (5.13)

If we let the dipole m point in the direction of the z-axis (m = mẑ, ẑ ≡ z/z), the components
of H can be decomposed to yield

Hz = µ0

4π

[(
− 1

r3
+

3z2

r5

)
m′ − 2

3

µ2
γ m

r
e−µγ r

]
, Hx = µ0

4π

3zx

r5
m′, (5.14)

where m′ = (1 + µγ r + 1
3µ2

γ r2)m. These indicate that the dipole field includes two parts: an
ordinary magnetic dipole field as in Maxwell’s theory (µγ = 0) with the dipole strength of

HD = µ0

4π

m′

r3
(3ẑ · r̂r̂ − ẑ) (5.15)

and a new field in the z-direction

Hext = − µ0

4π

2µ2
γ

3r
e−µγ rm (5.16)

with a negative sign that reinforces the equatorial field and weakens the polar field of the dipole.
This new field, uniformly distributed on the surface of the earth, is antiparallel to the direction
of the magnetic dipole moment m. Schrödinger interpreted this ‘homogeneous’ field as the
‘external field’ and used this method to analyse the geomagnetic field from the 1922 magnetic
surveys, obtaining the ratio of the ‘external field’ Hext to the dipole field HD at the equator of
the earth (ẑ · r̂ = 0) as

Hext

HD
= (2/3)µ2

γ R2

1 + µγ R + (1/3)µ2
γ R2

= 539

31 089
(5.17)
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which gives

µγ R = 0.176. (5.18)

Substituting the radius of the Earth for R, this yielded a photon rest mass of mγ � 1.0×10−47 g.
Bass and Schrödinger (1955) suggested that multiplying this result by a factor of 2 (for a safety
margin) gave a more reliable upper bound: mγ � 2.0 × 10−47 g.

Goldhaber and Nieto (1968) improved on Schrödinger’s results by using Cain’s fit
to geomagnetic data from earthbound and satellite measurements. They argued that the
significance of the limit on the external field depended crucially on the reliability of Cain’s fit
to the geomagnetic field. To take into account the possibility of systematic errors in Cain’s fit
and any errors in the estimates of true external fields, they generously magnified the error in
their estimate and arrived at an upper limit on the rest mass of the photon of mγ � 4×10−48 g.
This result corresponded to a photon Compton wavelength of 81 times the radius of the earth,
and was five times better than the result of Schrödinger.

Davis et al (1975) applied Schrödinger’s external field method to an analysis of the
Pioneer-10 data on the magnetic field of Jupiter. During the course of the data processing,
the photon rest mass was treated as a free parameter, and the standard least-squares procedure
was applied to determine the best-fit coefficients in a spherical-harmonic expansion of the
Pioneer-10 observations of Jupiter’s magnetic field. By taking full advantage of the larger
radius and stronger magnetic field of Jupiter, they finally set an upper limit on the photon mass
of mγ � 8 × 10−49 g, which is the smallest limit so far obtained from direct measurements by
using Schrödinger’s external field method.

In 1994, Fischbach et al derived a new geomagnetic limit on the photon mass from
an analysis of the satellite measurements of the Earth’s magnetic field. After considering
the contributions from several different sources, they found that the largest value that
Hext could have (at the 1σ level) was Hext = 11.8 nT. Using a value of the dipole
field of HD = 30 573 nT as found by Langel and Estes (1985), they then concluded
that Hext/HD = 11.8/30 573 � 3.9 × 10−4 and that the resulting limit on the photon
mass was mγ � 1 × 10−48 g, a value quite close to that obtained from the analysis of
Jovian data.

The Schrödinger external field method has provided the most convincing limits on the
photon rest mass as derived from astronomical magnetic surveys, and the results from it are
compatible with other aspects of the present knowledge in this area. However, at larger scales,
it is difficult to separate planetary magnetic fields from those produced by currents flowing in
the surrounding plasma. Therefore, the significance of limits placed on the photon mass by this
approach depends crucially on the reliability of the method of data analysis. When extracting
the external field from satellite measurements of geomagnetic fields or those of Jupiter, a
variety of plausible sources of systematic effects require very careful study. These include the
solar wind, the density of the surrounding plasma, the satellite trajectory, etc. Hence, several
different approaches are conventionally used to verify the validity of the model-dependent
data analysis.

5.3.2. Altitude-dependence of massive photon geomagnetic fields. In Maxwell’s theory, the
strength of the geomagnetic field decreases via an inversely proportional relation to altitude.
However, in massive photon electromagnetism, this relation instead describes the exponential
decay of the geomagnetic field as altitude increases. So, using the data measured by satellites
at different altitudes, one could determine the photon rest mass by detecting the characteristics
of the exponential decay of the geomagnetic field.
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The decay of the geomagnetic field with altitude can be approximated by expanding
equation (5.13) in a power series in µγ r (Zhang 1998),

H(1)(µγ r) = HD

[
1 +

(µγ r)2(1 − 5 cos2 θ)

2(1 + 3 cos2 θ)
+ O(µγ r)3

]
≈ G(µγ , r, θ)HD (5.19)

in which θ is the angle between the direction of the magnetic dipole moment m and r̂, and

G(µγ , r, θ) = 1 +
(µγ r)2(1 − 5 cos2 θ)

2(1 + 3 cos2 θ)
,

HD = µ0

4π

1

r3
|(3m · r̂r̂ − m)| = µ0

4π

m

r3

√
1 + 3 cos2 θ.

This method couples the photon rest mass with variation in altitude, and can efficaciously
distinguish the effect from others which happen to be height independent. On the other hand,
because of certain external perturbations, this method can become ineffective when the altitude
exceeds a certain limit, which is roughly three times the radius of the earth for the geomagnetic
field.

The first limit obtained by this method was by Gintsburg (1963), who used the geomagnetic
field data at varying altitudes from the Vanguard, Explorer and Pioneer satellites and assumed
G(µγ , r, θ) = 1−(µγ r)2. His limit was mγ < 3×10−48 g. It was amended by Goldhaber and
Nieto (1968) who, after a more conservative error estimate, arrived at mγ < (8–10)×10−48 g.

5.3.3. Eccentric dipole effects due to a massive photon. In fact, the real geomagnetic field
is closer to that produced by an eccentric dipole. The location of this eccentric dipole is
at 6.5˚ North latitude and 161.8˚ East longitude, and the distance between the geocentre
and the eccentric dipole origin is 342 km (Schrödinger 1943b). From expression (5.10),
the lines of vector potential are circles around the magnetic dipole axis, and hence would
intersect the surface of the Earth. This means that the integral of this magnetic field along
an arbitrary closed path on the surface of the Earth would be nonzero, which corresponds to
an existing imaginary current perpendicular to the Earth’s surface. For an eccentric dipole
with an eccentricity distance of d , the effect produced by a finite photon rest mass would be
d/R = 342/6378 ≈ 1/19 times smaller than that of the external field method at the surface of
the Earth, which indicates that the eccentric dipole effect will not yield a more stringent limit
on the photon rest mass than the external field method, even if the imaginary current could be
distinguished.

5.4. Magnetohydrodynamic effects

It is well-known that magnetohydrodynamic (MHD) phenomena are characterized by a
combination of ordinary hydrodynamics and Maxwellian electromagnetism, which is then used
to describe the interactions between magnetic fields and a free fluid. If the photon possesses a
finite rest mass, MHD phenomena within the interplanetary plasma (e.g. hydrodynamic wave
couplings to the interplanetary magnetic field) might provide useful approaches for determining
the size of that mass due to its effect on their ordinary Maxwellian description. A self-consistent
set of MHD equations accounting for finite photon mass was developed by Ryutov (1997),
whose careful analysis of various astrophysical observations led to interesting approaches for
making improvements to estimates of the photon mass. Ryutov used this model to investigate
the fields due to the solar wind at various points within the Earth’s orbit, and concluded that, ‘to
reconcile observations to theory, one has to reduce mγ by approximately an order of magnitude
compared with Davis in 1975’, i.e. mγ � 1×10−49 g ≡ 6×10−17 eV. This value is the one that
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is currently recommended by the Particle Data Group in their recent compendium (Eidelman
et al 2004). In what follows we examine some of the relevant MHD phenomena more closely.

5.4.1. Dispersion of hydromagnetic waves. After the theoretical prediction of hydromagnetic
waves by Alfvén (1942, 1950), the existence of such waves was subsequently demonstrated
in the laboratory by several workers (Lundquist 1949, Lehnert 1954, Sugiura 1961), and the
importance of those waves in geophysics and astrophysics was soon recognized. The medium
through which such waves propagate is plasma instead of vacuum. Therefore, after taking a
nonzero photon mass into account, we must write a new set of dispersion relations for the two
types of hydromagnetic waves. Replacing Maxwell’s equations by Proca’s equations for this
task, we arrive at

k2 = ω2

V 2
A

− µ2
γ for magnetosonic waves (5.20)

and

k2 cos2 θ = ω2

V 2
A

− µ2
γ for Alfvén waves, (5.21)

where VA =
√

H 2/4πρ is the Alfvén velocity, ρ the mass density of plasma and θ the angle
between the wave vector k and the external magnetic field H. This model suggests that there is a
critical frequency ωc = µγ VA, such that when ω < ωc, the waves are attenuated exponentially.
Therefore, if we know the critical frequency, we can determine the photon mass through it.

In 1963, Gintsburg proposed that to estimate the upper limit on the photon mass,
one might experimentally observe long-period hydromagnetic disturbances that are free of
damped oscillations in interstellar space. Meanwhile, in order to determine how the nature
of those waves depends on the magnetic field variation, their amplitude should be observed
simultaneously at the earth’s surface and at several different points in space around the earth.
Patel and Cahill (1964) obtained the records of observations of such waves propagating
simultaneously in the magnetosphere and on the ground, in the form of magnetograms measured
by the Explorer XII Satellite. They found that hydromagnetic waves with a period of 200 s
were generated at 5 × 104 km from the centre of the earth, and that those waves travelled to
the earth’s surface in about 90 s with an amplitude attenuation of 1

3 . By assuming a plasma
density n = 50 cm−3, and taking the magnetic field to be 100 nT (10−3 G), Patel (1965) found
the photon mass to be mγ < 4 × 10−47 g, approximately the same value as that of Gintsburg
(1963). However, the effect on the calculations due to uncertainties in the particle density
and the critical frequency may make these limits at least one or two orders of magnitude less
stringent.

By using new observations of the Alfvén waves in the interplanetary plasma detected by
spacecraft at one astronomical unit (1 AU = 1.49 × 1011 m, the Earth–Sun distance), Hollweg
(1974) was able to search for time varying phenomena based on correlations between the
magnetic field and the plasma velocity. He concluded that those waves were of extremely low
frequency with a period of less than 1 day in the spacecraft frame of reference. To get the
frequency in the local rest frame of the plasma, he asserted that the direction of propagation
of the waves should be independent of the wave period. Hollweg considered two extreme
cases. First, assuming that the absence of waves with periods longer than 1 day was not due
to the presence of the photon mass in equation (5.21), he obtained a stronger but less certain
limit of mγ < 1.1 × 10−49 g (corresponding to VA = 20 km s−1 and ωc = 6.3 × 10−6 s−1).
Then, assuming that the absence of waves with periods longer than 1 day was indeed due
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to a finite photon mass in equation (5.21), he obtained the relatively reliable upper limit of
mγ � 1.3 × 10−48 g (corresponding to VA = 20 km s−1 and ωc = 7.2 × 10−5 s−1).

Another upper limit on the photon mass was found by Barnes and Scargle (1975) through
observations of hydromagnetic waves in the Crab Nebula. Studies of the central region of the
Crab Nebula (Scargle 1969) had indicated that the plasma consisted of an ultra-relativistic
electron component and a tenuous lower-energy background component, embedded in a
magnetic field that was relatively uniform on the scale ∼1016 m. Quasi-periodic disturbances
(ω ∼ 10−6 s−1) generated in the vicinity of the pulsar propagated across the magnetic field out
into the nebula. This series of ‘wisps’ has been identified as a sequence of magnetoacoustic
waves in which the wave compressions produced local enhancements of synchrotron radiation.
From the kinetic theory of small-amplitude hydromagnetic waves in relativistic plasma,
Barnes and Scargle obtained the dispersion relation for magnetoacoustic waves propagating
transversely to the background magnetic field

( ω

kc

)2
[

1 +
4π

B2
(ε + P⊥)

]
= 1 +

2πP⊥
B2

(4 − ζ ) +
µ2

γ

k2
, (5.22)

where P⊥ is the total plasma pressure transverse to the background magnetic field B, ε the total
energy density (including rest mass), and ζ a numerical factor between 0 and 1. Equation (5.22)
implies that the critical frequency of waves propagating (k2 > 0) in the nebula will be

ωc = µγ c

(
1 +

4π

B2
(ε + P⊥)

)−1/2

. (5.23)

Barnes and Scargle (1975) estimated the magnitude of the parameters from analysis of
photographic measurements of the Crab Nebula (Scargle 1969) and argued that the uncertainties
in those parameters arose mostly from ambiguities in interpretation, due to inadequate
determination of the time histories of the rapidly moving features, rather than from more
standard measurement uncertainties. They arrived at a final upper bound on the photon mass
of mγ � 3 × 10−54 ∼ 3 × 10−53 g, which represented an improvement of four to five orders
of magnitude over the other contemporary limits on the photon mass at that time.

However, Barnes and Scargle (1975) pointed out that although the standard arguments
(Gintsburg 1963, Patel 1965, Goldhaber and Nieto 1971b) for inferring upper limits on the
photon rest mass from cosmic hydromagnetic waves gave plausible but not rigorous limits,
they derived from an essential yet intrinsic assumption that the background plasma is infinite
and uniform. Moreover, one simple consequence of the Proca equations is that either a static
magnetic field varies perceptibly over the scale of order µ−1

γ , or there is a large background

current J0 ≈ µ−1
0 µ2

γ A(J0 � µ−1
0 |∇ × B|). In either case, the dispersion relation breaks down

for k � µγ . Consequently, the upper limits of the photon rest mass obtained by this method
would then be open to doubt. Byrne (1977) has pointed out that for a correct treatment, the
dispersion relation would need to be derived self-consistently from the Proca equations and
the plasma equations. Until that is done, the limits mentioned in this subsection may not be
completely free of interpretation.

5.4.2. Dissipation of the interplanetary magnetic fields. Hydromagnetic theory says that
a conducting medium moving in a magnetic field would generate an induced electromotive
force. Generally, the finite conductivity of the medium would cause an exponential attenuation
of the magnetic field, the rate of which is determined by the size of its conductivity and the
dimensions of the supporting plasma. However, when considering the additional effects of a
finite photon rest mass, the situation would be different.
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Williams and Park (1971) considered this case and pointed out that the field would diminish
at a rate determined by the plasma dimensions and the photon’s Compton wavelength, the
smaller number predominating. They assumed a galactic arm that had been straightened out
so as to form a long filament of plasma with a magnetic field running down it, and supposed that
the plasma is electrically neutral and that there is no electric field along the filament, so that the
currents flow perpendicular to its length. Moreover, they assumed that the spatial distribution
of the galactic plasma does not change dramatically for periods of the order of 106 years. After
making these assumptions, there was no need to deal directly with the hydrodynamic equations
for the plasma, but rather only with the damping force and the electromagnetic force acting on
the electrons and ions. By use of the Proca equations, and ignoring inertial forces, they found
that the dissipation of the magnetic energy in the arm of the galaxy was

W ∼ exp

[
−2ν

l2
(1 + µ2

γ l2)t

]
, (5.24)

where ν = c2/4πσi ≈ 1023 cm2 s−1 with σi ≈ 10−3 s−1 as per the known properties of cool
plasma in the HI zones of the galaxy, and l is the length of the order of the radius of the spiral
arm. The dissipation time of this magnetic energy would thus be

τ ∼ l2

2ν
(1 + µ2

γ l2)−1. (5.25)

The flux of primary cosmic rays has remained roughly constant on average over the last million
years, which indicates that τ ∼ 106 years. By assuming that the field has remained unchanged
over this time span and by further accepting all of the astrophysical hypotheses mentioned
earlier, Williams and Park gave an upper bound to the photon rest mass of mγ < 3.4×10−56 g.

Byrne and Burman (1972) re-examined the dissipation of large-scale magnetic fields in the
Galaxy and pointed out that Williams and Park (1971) had adopted a common misinterpretation
of the tensor conductivity. Considering a three-fluid plasma consisting of electrons, protons
and identical neutral particles, and ignoring the inertial force and pressure gradients, Byrne
and Burman claimed that, when the conductivity is effectively infinite, the magnetic flux is
‘frozen-in’ to closed contours moving with the velocity of the magnetic field, which is much
closer to the electron velocity than to the bulk velocity of the combined electron–proton fluid.
The conductivity relevant to both Joule heating and the rate of diffusion of lines of the magnetic
field is defined by

σ−1 = me

ne2

[
vei +

(
mi

mi + me

)2

ven +
mime

(mi + me)2
vin

]
, (5.26)

where n is the electron or proton number density, e the charge on a proton, and m is the particle
mass with subscripts e, i and n denoting quantities pertaining to the electron, proton and neutral
particle fluids, respectively. The momentum relaxation frequency vab represents the rate of
collisions of particles of the component fluid a with particles of the component fluid b in
the above expression. In interstellar space, the electron–proton collision frequency is much
larger than the electron–neutral and proton–neutral collision frequencies, and hence the friction
between the combined electron–proton fluid and the neutral fluid can be neglected. Using
Faraday’s law and the Proca equation, and ignoring the displacement current and gradients of
the conductivity, Byrne and Burman obtained

∂H
∂t

= ∇ × (uH × H ) +
c2

4πσ
(∇2H − µ2

γ H), (5.27)

where uH could be referred to as the velocity of the magnetic field. The first term in
equation (5.27) is the same as that in usual hydromagnetics, in which the magnetic field is
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‘frozen’ into the medium. The last two terms denote the dissipation effects of the interstellar
magnetic field. Using L to denote the distance over which the magnetic field H varies
significantly, ∇2H ∼ L−2H . The dispersion in equation (5.27) implies that the magnetic
field H decays as exp(−t/τ ) with

τ ≈ 2πσc−2(L−2 + µ2
γ )−1. (5.28)

For the region L � µ−1
γ ,

µγ ≈
√

2πσ

c2τ
. (5.29)

In interstellar space, σ ≈ ne2/mevei, and vei ≈ 5.5n ln(220T n−1/3)T −3/2 (Ginzburg 1970)
with T denoting the temperature, and thus

σ ≈ e2

me

T 3/2

5.5 ln(220T n−1/3)
. (5.30)

Hence, the conductivity σ depends strongly on T but only slightly on n. According to
equations (5.30) and (5.31), the variation of µγ with T is more significant than that with
τ , and so the best upper limit for photon mass that comes from considering the dissipation of
large-scale magnetic fields will be for the case where one is investigating a cool region with
long-lived fields.

Applying those expressions to galactic HI regions, and using T � 102 K and n ≈
10−3–10−2 cm−3 yields σ � 5 × 109 s−1. If the existence of large-scale magnetic fields
in HI regions with τ � 106 year is established, a reduced limit of mγ < 4 × 10−50 g is
found. On the other hand, if there is a general galactic magnetic field, the dissipation time
τ can be estimated to be at least equal to the rotation period of the galaxy, i.e. 2 × 108 year.
Furthermore, if the temperature T is assumed to remain approximately the same over that time,
then the corresponding limit on the photon mass would be mγ < 4×10−51 g, and the Compton
wavelength for it reaches 1 AU. If there exists a medium with T ∼ 104 K with cool HI regions
embedded in it, then mγ < 10−49 g. From the information that was known at the time about
the interstellar medium (ISM) and field, a conservative upper limit for the photon mass was
obtained by considering magnetic fields with a scale of a few hundred parsecs, T � 104 K and
τ � 106 year. The result was mγ < 10−48 g, which represented a modest improvement over
the upper limit that had been established by (Goldhaber and Nieto 1971b) of mγ < 4×10−47 g.

5.4.3. Stability of current density in the ISM. If the photon possessed a finite rest mass, then
Proca’s equations could be used to deduce the charge and current densities underlying electric
and magnetic fields. Moreover, if the dimensions of the fields are greater than the reduced
Compton wavelength of the photon, then the structures of the fields as derived from Proca’s
equations would be significantly different from those derived from Maxwell’s equations. In
their review of theoretical and experimental work on the photon rest mass, Goldhaber and Nieto
(1971b) proposed another astrophysical method: one can use the conditions for the existence
and stability of the current densities needed to produce the observed galactic magnetic field to
place an upper limit on the photon rest mass from a knowledge of the size of that field.

Following Goldhaber and Nieto, Byrne and Burman (1973) then developed this method
in detail. It has been shown (Alfvén and Carlqvist 1967, Alfvén 1968, Carlqvist 1969) that a
plasma becomes unstable and locally evacuated, with a corresponding large fall in conductivity,
when the electron drift velocity V exceeds the electron thermal speed Ue. Also, when V

exceeds the phase speeds of some types of waves, instabilities can occur. For example, the
magnetosonic over-stability arises when V exceeds the Alfvén speed VA. If Vm denotes the
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maximum electron drift speed that the plasma can support stably, then the maximum current
density that could exist in the plasma is jm = neVm, in which n is the electron number
density and e the electronic charge. Obviously, the maximum current density that can exist in
interstellar space would be jm ∼ nec when the maximum electron drift speed is equal to the
speed of light.

Let L1 represent the characteristic length over which the vector potential field A varies
significantly; then |∇2A| ∼ L−2

1 A. According to Proca’s equations, if L1 � µ−1
γ , the equation

for A becomes

µ2
γ � µ0jm

A
. (5.31)

The vector potential field is not directly observable, and there is insufficient information about
the geometry of the magnetic field of the galaxy to deduce A. Nor can the current density
of interstellar space be directly measured. However, an approximation for the strength of the
vector potential field can be made by taking A ≈ HL2 with L2 denoting another characteristic
length over which the vector potential field A varies significantly. For the MHD situation, both
L1 and L2 will usually be the smallest dimension of a quasi-uniform magnetic field. Thus,
expression (5.31) reduces to

µ2
γ � µ0neVm

H min(L1, L2)
. (5.32)

Making use of the data, H ∼ 10−6 G, Vm � 103 m s−1, n � 1 cm−3 and L ≈ 1019 m,
Goldhaber and Nieto (1971b) obtained a limit of mγ < 4×10−53 g. Through a consideration of
various instabilities in the ISM of the galactic HI regions, Byrne and Burman (1973) established
a limit on the photon rest mass of mγ < 10−52 g for the case where the intercloud medium is
hot (≈104 K), and mγ < 4 × 10−53 g when the HI clouds are cool (<102 K). More recently,
Goldhaber and Nieto (2003) arrived at a limit of mγ < 10−52 g for dimensions on the scale of
the Coma cluster (Asseo and Sol 1987, Kronberg 1994, 2002) using the same method.

On the other hand, the maximum current density in the ISM can be obtained from a
consideration of the heat balance in the medium. One can calculate the rate � at which
thermal energy is lost by all processes (Byrne and Burman 1973, Burman and Byrne 1973,
Byrne 1977) and, in thermal equilibrium, the rate of Joule heating, j 2/σ , cannot exceed �.
Hence j 2

m � σ�, and from equations (5.31) and (5.32),

µ2
γ � µ0

√
σ�

H min(L1, L2)
. (5.33)

Byrne and Burman (1973) discussed the values of σ and � in the ISM and showed that the
current density

√
σ� is about five orders of magnitude less than the maximum value jm ∼ nec

that the medium can support. Hence, an upper limit of mγ < 4 × 10−53 g is obtained, which
is similar to the value found from stability considerations. An alternative interpretation of this
result is that if the photon rest mass is mγ ∼ 4 × 10−53 g, then a major heating mechanism
of the ISM is Joule heating due to the passage of a current. In fact, there is sufficient energy
in the magnetic field of the galaxy to support heating at this rate. Byrne and Burman (1975)
analysed this case.

For a magnetic field of dimensions greater than the reduced Compton wavelength of the
photon, the dominant contribution in the energy density of the massive photon electromagnetic
field (see equation (2.17)) is µ2

γ A2/2µ0, which is of the order of µ2
γ H 2L2/2µ0, where L is

the size of the smallest dimension for an approximately uniform magnetic field. If ρ denotes
an upper limit on the mean mass density of matter and energy in all forms that could exist
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in a region of space in which a magnetic field is observed, then µ2
γ A2/2µ0c

2 � ρ, and
hence

µ2
γ � 2µ0c

2ρ

H 2L2
. (5.34)

The galactic magnetic field in the vicinity of the Sun has been observed (Manchester 1974)
to have a strength of ≈0.2 nT (2 × 10−6 G) and is approximately uniform over a distance of
at least 300 parsecs (1 parsec = 3.08 × 1016 m). The masses of galaxies may be estimated
from their rates of differential rotation and from the orbital velocities of binary star systems
in them; a conservative upper limit for the galactic disc is ρ � 10−21 g cm−3. Assuming that
the interstellar magnetic field in the vicinity of the Sun is typical of magnetic fields in the
galactic disc, inequality (5.34) leads to mγ < 10−51 g. Their explanation of these results is
that if mγ ∼ 10−52 g, the main contribution to the mass of the galactic disc is then due to the
energy density µ2

γ A2/2µ0 associated with the observed galactic magnetic field, the magnitude
of which exceeds the Maxwellian energy density by 11 or more orders. On the other hand, it
is worth noting that the large energy densities associated with large-scale magnetic fields and
a finite photon rest mass could be significant in some astrophysical processes.

However, Chibisov (1976) pointed out that in the method of Byrne and Burman (1975),
an important circumstance that could radically alter the conclusions had not been taken into
account. Chibisov argued that if one calculated the energy–momentum tensor in macroscopic
(distances of the order of the solar diameter) electrodynamics with a nonzero photon mass, the
total magnetic pressure PM is found to consist of the pressure PB = B2/2µ0 due to the field B
and an additional pressure PA = µ2

γ A2/2µ0 due to the vector potential A. If the magnetic
field B varies over a characteristic length L, then the definition B = ∇ × A gives A ∼ BL.
The comparison of the magnetic pressure and the pressure of the vector potential shows that
the effect of electrodynamics with finite photon mass over a scale L is greater than that over
a scale of the photon Compton wavelength. Thus, the photon Compton wavelength is a kind
of fundamental length in electrodynamics because Maxwell’s equations must be replaced by
the Proca equations for scales greater than this fundamental length. This is unusual in that
it determines the region of applicability for the theory at large scales, but not at small ones.
Chibisov further argued that it is necessary to use the equations of general relativity to calculate
correctly the gravitational field of relativistic mass–energy such as the electromagnetic field,
in which case those two contributions cancel each other and the galactic magnetic field cannot
produce anomalously strong gravitational fields. His re-calculation showed that the mass of the
galaxy, as determined from the differential rotation rates, cannot contain a contribution from
effects associated with a nonzero photon rest mass, and, therefore, the principal argument of
Byrne and Burman (1975) should be superceded. From an analysis of the mechanical stability
of the magnetized gas in galaxies, with allowance for the specific pressure forces of the vector
potential, Chibisov obtained an upper limit on the photon rest mass of mγ � 3 × 10−60 g.

As the most stringent bound on the photon mass, Chibisov’s method depends in a critical
way on assumptions, such as applicability of the virial theorem (Binney and Tremaine 1987),
which states that, for a stable, self-gravitating, spherical distribution of equal mass objects
(stars, galaxies, etc), the total kinetic energy of the objects is equal to − 1

2 times the total
gravitational potential energy. The virial theorem is a remarkably useful simplifying result
for otherwise very complex physical systems such as solar systems or galaxies, and is also
applicable to a number of other similar scenarios. However, the structure of the galactic
magnetic field is not very well-known and the reliability of this approach thus remains
somewhat unclear.
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5.4.4. Other methods. Yamaguchi (1959) argued that there is hydromagnetic turbulence
in the large scale motions of interstellar media, particular in the Crab nebula. His idea was that
the photon Compton wavelength should not be smaller than the dimension D of such magnetic
turbulences. Using the scale of the Crab nebula D ∼ 1015 m, he obtained an upper limit on the
photon mass of mγ � 4×10−55 g. When the same technique was applied to the field in one of
the spiral arms of the Milky Way galaxy, Yamaguchi claimed that a limit of mγ � 4 × 10−59 g
could be obtained (Goldhaber and Nieto 1971b).

5.5. Gravitational deflection of massive photons

In 1973, Lowenthal proposed a method for setting limits on the photon mass by exploiting the
gravitational deflection of electromagnetic radiation. As is well-known, the theory of general
relativity predicts a deflection of starlight by the Sun of 1.75 arcsec (Hawking 1979). If the
photon has a nonzero rest mass, this deflection angle would become

θ = θ0

(
1 +

m2
γ c4

2h2v2

)
, (5.35)

where θ0 = 4MG/Rc2 is the deflection angle for a massless photon, M is the solar mass, G the
Newtonian gravitational constant, R the photon impact parameter (normally the solar radius),
and hv the photon energy. Lowenthal set the correction term � = θ0(m

2
γ c4)/(2h2v2) equal to

the difference between the measured deflection angle and the deflection angle calculated for
photons with zero rest mass. By so doing, an expression setting an upper limit on the photon
mass could be written as

m2
γ � hv

c2

√
2�

θ0
. (5.36)

Using the above equation and the data available at the time on the deflection of electromagnetic
radiation by the Sun, Lowenthal considered three cases and obtained: (1) for visible light,
mγ < 1 × 10−33 g with v = 5 × 1015 Hz and � ≈ 0.1 arcsec; (2) for radio source 3C 270,
mγ < 7 × 10−40 g with v = 3 × 109 Hz and � ≈ 0.1 arcsec; (3) for intercontinental baseline
interferometry, a promising limit would be mγ < 7 × 10−41 g if the deflection measurement
at radio frequencies could be improved to 0.001 arcsec. Recently, Accioly and Paszko (2004)
analysed the energy-dependent deflection of a massive photon by an external gravitational
field and arrived at the same expressions for setting limits on the photon mass as found
in equation (5.36). Using the best measurement of the deflection of radio waves by the
gravitational field of the Sun (≈1.4 × 10−4 arcsec) and the lowest frequency employed by
radio astronomers (≈2 GHz), they found a limit of mγ < 10−40 g.

The values of mγ derived from gravitational deflection are considerably weaker than the
other bounds obtained recently, and this method for setting limits on the photon mass is, in
principle, less precise than the approaches that directly measure the dispersion of light passing
through interstellar space (Lowenthal 1973). Even so, the method is an interesting independent
approach and its presentation adds to the evidence restricting the size of the photon mass.

5.6. Present difficulties

As seen above, the various limits obtained by what we termed extra-terrestrial methods are
several orders of magnitude more stringent than those obtained by terrestrial approaches (see
table 3). However, there are a number of inherent difficulties in any approach aimed at making
accurate estimates of the photon rest mass. Some of the resulting limits on it are lower than the
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Table 3. Summary of upper limits on the photon mass as obtained by extra-terrestrial methods
(in temporal order).

Author (year) Physical phenomena investigated Bounds on mγ g

De Broglie (1940) Dispersion of starlight (binary stars) 8 × 10−40

Bass and Schrödinger (1955) External fields (geomagnetic fields) 2 × 10−47

Yamaguchi (1959) Scale of hydro-magnetic turbulences in Crab Nebula 4 × 10−55

Gintsburg (1963) Altitude-dependence of massive photon 3 × 10−48

geomagnetic fields
Patel (1965) Dispersion of hydromagnetic waves 4 × 10−47

(in Earth’s magnetosphere)
Goldhaber and Nieto (1968) External fields (geomagnetic fields) 4 × 10−48

Altitude-dependence of massive photon (8–10) × 10−48

geomagnetic fields
Feinberg (1969) Dispersion of starlight (NP0532) 10−44

Williams and Park (1971) Dissipation of large-scale magnetic fields in Galaxy 3.4 × 10−56

Goldhaber and Nieto (1971) Stability of plasma in Galaxy 4 × 10−53

Byrne and Burman (1972) Re-examination of Williams and Park’s results 4 × 10−50

Byrne and Burman (1973) Stability of plasma in Galaxy (for hot intercloud medium) 10−52

Stability of plasma in Galaxy (for cool intercloud medium) 4 × 10−53

Lowenthal (1973) Gravitational defection for radio source 3C 270 7 × 10−40

Hollweg (1974) Dispersion of hydromagnetic waves 1.3 × 10−48

(in interplanetary medium)
Davis et al (1975) External fields (Jovian magnetic fields) 8 × 10−49

Byrne and Burman (1975) Mean mass density of the galactic disc 10−51

Barnes and Scargle (1975) Dispersion of hydromagnetic waves (in Crab Nebula) 3 × 10−54–3 × 10−53

Chibisov (1976) Analysis of the mechanical stability of the magnetized gas 3 × 10−60

de Bernardis et al (1984) Investigation on the spectral behaviour (2.9 ± 0.1) × 10−51

of the cosmic background dipole anisotropy
Fischbach et al (1994) External fields (geomagnetic fields) 1 × 10−48

Ryutov (1997) Analysis of the solar-wind magnetic fields 10−49

Goldhaber and Nieto (2003) Stability of plasma in Coma cluster 10−52

Accioly and Paszko (2004) Gravitational defection of radio waves 10−40

recently recommended limit published by the Particle Data Group (Eidelman et al 2004); this
accepted value is the one taken to be most fundamentally compatible with present knowledge.
In any case, many of the models that have been used rely on some crucial assumptions which
are sometimes difficult if not impossible to check, at least at present.

It is important to note that almost all of the methods discussed in this section are essentially
order-of-magnitude arguments. Much more information would be needed about the structure of
the galactic magnetic field in order to find more accurate values. Some of the required quantities
include either improved estimates, inferences or measurements of the vector potential field, the
current density, the particle number density, etc. Order-of-magnitude arguments are seldom
convincing unless the argument itself is not sensitive to changes of several orders of magnitude
in the values of the parameters that are involved. This caveat is met in some of the cases,
since the upper limit to be obtained on the photon rest mass in them varies as the square
root of those parameters, but this is not so in all the cases. On the other hand, the physical
properties of the ISM, such as the mean electron density, temperature and the electron drift
velocity, are different for a spiral galaxy compared to that for clusters of galaxies (Fabian and
Barcons 1991). Also, at very large scales, comparatively little is known about the intergalactic
medium (IGM) at present. So, as an example, when using astrophysical data to place a limit
on plasma currents everywhere in a large region, one is hard pressed to make estimates of the
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systematic uncertainties involved. It is this type of incomplete knowledge about the ISM and
IGM (Kronberg 1994, 2002) that makes it difficult to use the extra-terrestrial methods to quote
precise results for mγ .

On the other hand, the Proca equations, which are used to develop the fundamental theory
for the massive photon, provide the pathway for almost all approaches to detect it. When
dealing with mγ one should distinguish between measurements and estimates performed on
large versus small scales, and one should also determine whether Maxwellian or Proca fields
are needed to describe the phenomena in the corresponding regions of interest. Unfortunately,
it is often difficult to draw these conclusions. As we have seen above, there have been
frequent controversies in this field, but this is a healthy sign in scientific research. From
the present vantage point, it seems clear that the more approaches that can be developed to
gain a comprehensive picture of the microscopic origin of the photon rest mass, the better,
since one never knows which specific attempts to improve this limit will a priori be the best.

6. Possible future improvements

6.1. Terrestrial experiments

For the dispersion-of-light studies, in order to obtain more stringent bounds on the photon
mass one should choose the waves of lower and lower frequencies that propagate over longer
and longer distances, both in terrestrial experiments and in extra-terrestrial observations.
However, the lower the wave energy, the more difficult the measurement becomes because
of dissipation in the medium over the long pathways involved. In practice, the two needs
often oppose each other. Due to this inherent restraint, it has been difficult to use this method
to improve the limits on the photon rest mass. Füllekrug (2003) proposed that by observing
the naturally occurring lightning discharges in the troposphere, which transmit radio waves
at extremely-low frequencies (5–50 Hz), the speed of light could be known with an accuracy
determined by perturbations of the ionospheric reflection height (≈90–110 km) associated
with space weather phenomena. The limit deduced for the photon rest mass by this method is
mγ � 4 × 10−49 g at ∼8 Hz, but there are several points requiring further consideration.
For instance, it is difficult to specify the uncertainty of the estimated value, even if this
limit is the most generous estimate which one can make by choosing the smallest observed
ionospheric reflection height perturbation. These perturbations are associated with the mean
solar rotation period, as was shown from 12 years worth of magnetic field measurements that
were made starting in 1986. The general technique remains of interest and it occupies a niche
similar to other determinations involving fields of the Earth (Fischbach et al 1994) and Jupiter
(Davis et al 1975).

The experiment of Williams et al (1971) has placed the best laboratory limit on the photon
rest mass to date. However, as discussed above, the sensitivity of laboratory experiments
scales as (µ2

γ L)2. Hence, one needs to improve the signal-to-noise ratio of such experiments
by a factor of 100 to improve the photon mass limit by a factor of 10. Thus, it will be a
nontrivial task to go beyond the present laboratory limit. Even so, a significant improvement
over the previous experiment appears possible through advances in experimental techniques.
There are potentially three ways to improve the experiment (Tu and Luo 2004): (1) choose
a larger dimension of experimental apparatus; (2) increase the applied alternating voltage;
and (3) detect a smaller potential difference. As for the experimental dimension, the limit
on the photon mass goes inversely as the scale of the shells that are used, whether they are
simple spheres or have icosahedral geometry. The amplitude of the voltage applied to the
outer conducting shell is not limited by theoretical restrictions but rather by practical operation.
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However, the frequency is limited by the approximation used to deduce equation (4.27), namely
kr < 1 and ω > µγ c. Obviously, then, the approximate frequency span over which one can
work should be µγ c < ω < r−1c, which sets the ultimate limiting frequency at ≈107 Hz
for a laboratory experiment of acceptable dimensions. The most crucial factor in improving
the accuracy of the Cavendish method is to reduce the noise voltage (Johnson 1928, Nyqyist
1928) hence enabling the detection of a smaller potential difference. The various approaches
to decreasing the noise are well-known: low temperature operation, long observation times,
applying a high frequency ac signal to the concentric shells, and increasing the input resistance.
The most promising approach, which would indeed lower the noise voltage by several orders,
is to use cryogenic techniques to reduce the temperature of the apparatus to the level of a
few millikelvin, in essence following the lead of transforming between room temperature and
cryogenic Weber-bar gravitational wave detectors.

As for the torsion balance method, the restrictions on the accuracy of the measurement arise
from the thermal noise and related instrumentational limits on the performance of the torsion
balance itself, and from the estimation of the cosmic magnetic vector potential. Several of the
instrumentational limits are quite well-known and have been discussed by Gillies and Ritter
(1993). However, the main difficulty will come from the estimation of the cosmic magnetic
vector potential, which clearly depends on obtaining an accurate map of the magnetic field
over such large scales of distance, and this is not attainable at present.

6.2. Extra-terrestrial detection

When the Schrödinger external field method is used to determine limits on the photon mass, the
pressing need for substantially improved geophysical data make it seem unlikely that a limit
lower than that obtained by Fischbach et al (1994) can be achieved without them. Among the
specific types of data needed are improved measurements of the dimensions of the Earth, its
magnetic field strength, and the fields in the solar system in the vicinity of the Earth. It is likely
that the best near-term improvements in the technique will come instead from observations
of the magnetic fields of Jupiter and of the Sun. By measuring the altitude-dependence of
a massive photon geomagnetic field at distances greater than those of the Pioneer 10 survey
(Davis et al 1975), i.e. from 4 to 100 times the radius of Jupiter as is anticipated for the
Galileo probe, a Jovian photon mass limit improved by a factor of 2–4 would be obtained.
The most intriguing potential improvement might come from a more accurate set of data
on the distribution of the magnetic dipole moment of the Sun inside the range of the solar
system, since the Sun has the advantages of larger dimensions and a stronger magnetic field.
However, the enormous and varying plasma currents around the Sun would make the magnetic
observations quite difficult, as discussed by Ryutov (1997).

As far as MHD effects are concerned, a number of important parameters remain unknown
at this point in time. As discussed above, the methods developed via such an approach involve
many assumptions, most of which are open to interpretation at present. Even if the limits
obtained by MHD effects might possibly be several orders of magnitude lower than those
arising from other methods, there are several points in the arguments where such questions
arise. Moreover, the MHD effects used to deduce upper limits on the photon rest mass can be
interpreted by alternative phenomena. Hence, it is not clear at present that further improvements
in the MHD methods will unequivocally lead to tighter actual constraints on mγ .

6.3. Concluding remarks

We have discussed the past and present upper limits that have been found for the photon rest
mass, and we have considered some possible areas where future improvements might occur.
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The concept of establishing a finite mass of the photon is rooted in the field of precision
measurement, and the related efforts to make high precision tests of the accuracy of the inverse
square law have been traced back to the time of Cavendish. The possibility of arriving at
an actual value for mγ has never been ruled out. Finding a nonzero value for the photon rest
mass would have no foreseeable consequences on everyday life and work, and have virtually no
impact on the bulk of terrestrial laboratory physics. However, for physics on scales comparable
with the Compton wavelength of the photon, the importance would be profound. This is the
region of astrophysics and cosmology where many doubts and suspicions await resolution, and
determining a nonzero value for the mass of the photon would be of substantial significance
for work on the formation and early evolution of stars and stellar systems, the origin and the
stability of large scale cosmic magnetic fields, the properties of the interstellar media and
plasma, and so on. Hence, it can truly be said that the problem of the photon rest mass is
ultimately of interest in both fundamental physics and applied electrodynamics.

The goal of the review has been to introduce the interested reader to the present theoretical
and experimental situation regarding the photon mass. While the review is neither fully
exhaustive nor completely detailed, we have sought to present a useful cross-section of the
literature on the topic and thereby provide a helpful starting point for further study. The
interested reader should also consult the recently published special issue of Metrologia devoted
to the physics and metrology of electrical charge, which includes papers by Falconer (2004),
Bartlett (2004), Unnikrishnan and Gillies (2004), Tu and Luo (2004), Lee et al (2004) and
Spavieri et al (2004).
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pp 39–40
Dingus B L et al 1988 Phys. Rev. Lett. 61 1906–9
Dirac P A M 1931 Proc. R. Soc. A 133 60
Dirac P A M 1948 Phys. Rev. 74 817–30
Dolgov A D and Zeldovich Y B 1981 Rev. Mod. Phys. 53 1–42
Dombey N 1980 Nature 288 643–4
Dorsey N E 1944 Trans. Am. Phil. Soc. 34 1–110
Eidelman S et al 2004 Phys. Lett. B 592 1–1109
Elliott R S 1966 Electromagnetics (New York: McGraw-Hill)
Evans M W and Crowell L B 2001 Classical and Quantum Electrodynamics and the B(3) Field (Singapore:

World Scientific)
Evans M and Vigier J P 1994 The Enigmatic Photon Volume 1: The field B(3) (Dordrecht: Kluwer)
Fabian A C and Barcons X 1991 Rep. Prog. Phys. 54 1069–122
Falconer I 2004 Metrologia 41 S107–14
Feinberg G 1969 Science 166 879–81



128 L-C Tu et al

Feldman G and Matthews P T 1963 Phys. Rev. 130 1633–8
Feynman R P 1949 Phys. Rev. 76 769–89
Fischbach E et al 1994 Phys. Rev. Lett. 73 514–7
Florman E F 1955 J. Res. Natl Bur. Stand. 54 335–45
Flowers J L and Petley B W 2001 Rep. Prog. Phys. 64 1191–246
Franken P A and Ampulski G W 1971 Phys. Rev. Lett. 26 115–7
Froome K D 1958 Proc. Phys. Soc. Lond. Sect. A 247 109–22
Froome K D and Essen L 1969 The Velocity of Light and Radio Waves (London: Academic)
Fuchs C 1990 Phys. Rev. D 42 2940–2
Fulcher L P 1986 Phys. Rev. A 33 759–61
Fulcher L P and Telljohann M A 1976 Am. J. Phys. 44 366–9
Füllekrug M 2003 Phys. Rev. Lett. 93 043901
Georgi H, Ginsparg P and Glashow S L 1983 Nature 306 765–6
Gerber C J, Chernikov M A and Ott H R 1993 Rev Sci Instrum. 64 793–801
Gillies G T and Ritter R C 1993 Rev. Sci. Instrum. 64 283–309
Gintsburg M A 1963 Astron. Zh. 40 703–9
Gintsburg M A 1964 Sov. Astron.-AJ 7 536–40 (Engl. Transl.)
Ginzburg V L 1970 The Propagation of Electromagnetic Waves in Plasmas 2nd edn (Oxford: Pergamon) pp 50–65
Goldhaber A S 1989 Phys. Rev. Lett. 62 482
Goldhaber A S and Nieto M M 1968 Phys. Rev. Lett. 21 567–9
Goldhaber A S and Nieto M M 1971a Phys. Rev. Lett. 26 1390–2
Goldhaber A S and Nieto M M 1971b Rev. Mod. Phys. 43 277–96
Goldhaber A S and Nieto M M 1976 Sci. Am. 234 86–96
Goldhaber A S and Nieto M M 2003 Phys. Rev. Lett 91 149101
Gray R I 1997 Physics Essays 10 342–63
Greiner W and Reinhardt J 1996 Field Quantization (New York: Springer) pp 141–70
Hagiwara K et al 2002 Phys. Rev. D 66 010001
Haines T J et al 1990 Phys. Rev. D 41 692–4
Hawking S W 1979 General Relativity: An Einstein Centenary Survey (London: Cambridge University Press)
Heering P 1992 Am. J. Phys. 60 988–94
Hernandez J T 1985 Phys. Rev. A 32 623–4
Hirata K et al 1987 Phys. Rev. Lett. 58 1490–3
Hollweg J V 1974 Phys. Rev. Lett 32 961–2
Ignatiev A Y and Joshi G C 1996 Phys. Rev. D 53 984–92
Jackson J D 1975 Classical Electrodynamics 2nd edn (New York: Wiley) pp 5–9
Jackson J D and Okun L B 2001 Rev. Mod. Phys. 73 663–80
Johnson J B 1928 Phys. Rev. 32 97–109
Kardar M and Golestanian R 1999 Rev. Mod. Phys. 71 1233–45
Kloor H, Fischbach E, Talmadge C and Greene G L 1994 Phys. Rev. D 49 2098–113
Kobzarev I Y and Okun L B 1968 Usp. Fiz. Nauk 95 131–7
Kobzarev I Y and Okun L B 1968 Sov. Phys. Usp 11 338–41 (Engl. Transl.)
Kohler C 2002 Class. Quantum Grav. 19 3323–31
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